31 research outputs found
Acalabrutinib (ACP-196) in Relapsed Chronic Lymphocytic Leukemia
BACKGROUND: Irreversible inhibition of Bruton tyrosine kinase (Btk) by ibrutinib represents a significant therapeutic advance for chronic lymphocytic leukemia (CLL). However, ibrutinib also irreversibly inhibits alternative kinase targets, which potentially compromise its therapeutic index. Acalabrutinib (ACP-196) is a more selective irreversible Btk inhibitor specifically designed to improve upon the safety and efficacy of first generation Btk inhibitors. METHODS: Sixty-one patients with relapsed CLL were treated in a phase 1â2 multicenter study designed to assess the safety, efficacy, pharmacokinetics and pharmacodynamics of oral acalabrutinib. Patients were continuously treated with acalabrutinib 100 to 400 mg once daily in the dose-escalation portion of the study, and 100 mg twice daily in the expansion portion. RESULTS: Patient demographics include a median age of 62 years; median of 3 prior therapies; 31% del(17)(p13.1) and 75% unmutated immunoglobulin heavy chain variable genes. No dose-limiting toxicities occurred. The most common adverse events observed were headache (43%), diarrhea (39%) and increased weight (26%). Most adverse events were Grade 1â2. At a median follow-up of 14.3 months, the best overall response rate was 95%, including 85% partial response, 10% partial response with lymphocytosis and 5% stable disease. In patients with del(17)(p13.1), the best overall response was 100%. No cases of Richterâs transformation and only 1 CLL progression have occurred. CONCLUSIONS: Acalabrutinib is a highly selective Btk inhibitor that provides effective and well tolerated treatment for patients with relapsed CLL, including those with del(17)(p13.1)
Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses in the lung during murine pneumococcal pneumonia
BACKGROUND: Streptococcus pneumoniae is a major causative agent in community-acquired pneumonia and sepsis. Overwhelming lung inflammation during pneumococcal pneumonia may hamper lung function. Ibrutinib is an irreversible inhibitor of Bruton's tyrosine kinase (Btk), a key signaling protein controlling the activation of various immune cells, including macrophages and neutrophils. The aim of this study was to determine whether ibrutinib treatment ameliorates acute lung inflammation during pneumococcal pneumonia. METHODS: Mice were treated orally with ibrutinib and the effect on acute pulmonary inflammation elicited by the gram-positive bacterial cell wall component lipoteichoic acid (LTA) and during ceftriaxone-treated pneumococcal pneumonia was assessed. RESULTS: Treatment with ibrutinib prior to and after intranasal LTA instillation reduced alveolar macrophage activation, neutrophil influx, cytokine release and plasma leakage into the lung. Postponed treatment with ibrutinib supplementing antibiotic therapy during ongoing pneumococcal pneumonia did not impair bacterial killing in lung, blood and spleen. In this setting, ibrutinib reduced alveolar macrophage and systemic neutrophil activation and substantially diminished further monocyte and neutrophil influx in the lung. In vitro, ibrutinib inhibited macrophage TNF secretion and neutrophil activation upon LTA and pneumococcal stimulation. CONCLUSIONS: Taken together, these data indicate that the Btk inhibitor ibrutinib reduces inflammatory myeloid cell responses during acute pulmonary inflammation evoked by LTA and antibiotic-treated pneumococcal pneumonia and suggest that ibrutinib has the potential to inhibit ongoing lung inflammation in an acute infectious setting