30 research outputs found

    Enzymatic control of anhydrobiosis-related accumulation of trehalose in the sleeping chironomid, Polypedilum vanderplanki

    Get PDF
    Larvae of an anhydrobiotic insect, Polypedilum vanderplanki, accumulate very large amounts of trehalose as a compatible solute on desiccation, but the molecular mechanisms underlying this accumulation are unclear. We therefore isolated the genes coding for trehalose metabolism enzymes, i.e. trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) for the synthesis step, and trehalase (TREH) for the degradation step. Although computational prediction indicated that the alternative splicing variants (PvTpsα/β) obtained encoded probable functional motifs consisting of a typical consensus domain of TPS and a conserved sequence of TPP, PvTpsα did not exert activity as TPP, but only as TPS. Instead, a distinct gene (PvTpp) obtained expressed TPP activity. Previous reports have suggested that insect TPS is, exceptionally, a bifunctional enzyme governing both TPS and TPP. In this article, we propose that TPS and TPP activities in insects can be attributed to discrete genes. The translated product of the TREH ortholog (PvTreh) certainly degraded trehalose to glucose. Trehalose was synthesized abundantly, consistent with increased activities of TPS and TPP and suppressed TREH activity. These results show that trehalose accumulation observed during anhydrobiosis induction in desiccating larvae can be attributed to the activation of the trehalose synthetic pathway and to the depression of trehalose hydrolysis

    Response of Tribolium castaneum to dietary mannitol, with remarks on its possible nutritive effects.

    No full text
    Mannitol, one of the sugar alcohols, is often used as a low-calorific carbohydrate by animals. In some insects, mannitol acts as a cryoprotectant to endure coldness, but also become a poisonous agent. Adults of the red flour beetle Tribolium castaneum were shown to recognize mannitol as a factor stimulating their feeding behavior, but it remains unclear whether T. castaneum can utilize mannitol as a source of nutrition, because the enzymes needed to metabolize mannitol are unknown in this species. This study shows that T. castaneum utilizes mannitol as a nutrient in a dietary assay based on a sole carbon source added to artificial gypsum diet. The amount of mannitol excreted was less than that ingested, suggesting that it is absorbed in the insect body. The hemolymph of T. castaneum contained no mannitol but contained trehalose, a known blood sugar in insects, even after being fed mannitol. This study also revealed that dietary mannitol was metabolized to triglyceride, the main component of the fat body, forming lipid droplets. It was found that metabolites of a mannitol-supplemented diet extend the lifespan of T. castaneum, compared with those obtained by metabolizing a mannitol-free diet. Given that the insects presented transcriptional changes upon being fed carbohydrates, it might be possible to identify specific genes related to mannitol-specific metabolism by their upregulation upon mannitol intake in T. castaneum. The present study investigated mannitol-responsive gene expression using RNA-Seq. Twenty-eight genes, including those encoding trehalose-6-phosphate synthase and fatty acid synthase, were differentially expressed between beetles that were fed or not fed mannitol. The identification of upregulated genes provides us with important insights into the molecular events following mannitol intake

    The Cytotoxic Effect of Genistein, a Soybean Isoflavone, against Cultured Tribolium Cells

    No full text
    The red flour beetle Tribolium castaneum is a known pest of various grains and stored-products such as wheat flours; however, T. castaneum feeds on and infests soybean and soy products. For more than 60 years, soy flour has been suggested to be unstable food for Tribolium spp. because it causes larval development failure. However, it remains unknown whether soy flour affects adult beetles. The objective of the present study was to examine the effects of soy flour and its related isoflavones against T. castaneum using an artificial dietary intake assay. Beetles were fed gypsum (a non-digestible compound) mixed with either water (control) or soy flour. Significantly fewer beetles survived after being fed the soy flour treatment. Although the soy isoflavone genistein, a defensive agent and secondary metabolite, decreased the T. castaneum adult survival, it required a long time to have a lethal effect. Therefore, the cytotoxic effects of soy flour, i.e., the rapid biological responses following isoflavone addition, were also examined using a cultured cell line derived from T. castaneum. Both genistin and genistein significantly affected the survival of the cultured cells, although genistein had a stronger lethal effect. This study demonstrated the toxicity of genistein found in soybean against T. castaneum cultured cells within 24 h period. Genistein may be used as an oral toxin biopesticide against T. castaneum

    昆虫病原性線虫Steinernema carpocapsaeの昆虫培養細胞を用いた新規培養システムの開発とRecoveryに関する研究

    No full text

    In vivo direct cell-penetrating peptide mediated protein transduction system in Acyrthosiphon pisum

    No full text
    Abstract Objective The principal delivery method for CRISPR-based genome editing in insects is now based on microinjection into single cells or embryos. The direct protein transduction systems cannot be employed in aphids because oogenesis occurs without apparent vitellogenesis. Given the limited timing of injection into the embryonic stage in oviparous aphids, a protein delivery system from the hemolymph to the germline and embryos would be a useful tool for genome editing. This study reports a newly developed direct protein delivery system for aphids using cell-penetrating peptides (CPPs). CPPs are short peptides that translocate across the plasma membrane when bound to cargo proteins. Results Penetratin (PEN), a widely conserved CPP among insects, was identified in this study. We used mVenus, a recombinant fluorescent protein, as a visual marker for CPP availability assessments, and fused it with PEN by bacterial protein expression. The mVenus-PEN recombinant proteins were introduced into the hemolymph of adult unwinged Acyrthosiphon pisum females using a nanoinjector. Fluorescence emitted by mVenus-PEN was observed in various tissues, such as the gut, trachea, bacteriocytes, and their progeny. This study shows that PEN can deliver exogenously expressed proteins into tissues in vivo, indicating that CPPs are powerful tools for protein transduction

    A mannitol/sorbitol receptor stimulates dietary intake in Tribolium castaneum.

    No full text
    In insects, perception of chemical stimuli is involved in the acceptance or rejection of food. Gustatory receptors (Grs) that regulate external signals in chemosensory organs have been found in many insects. Tribolium castaneum, a major pest of stored products, possesses over 200 Gr genes. An expanded repertoire of Gr genes appears to be required for diet recognition in species that are generalist feeders; however, it remains unclear whether T. castaneum recognizes a suite of chemicals common to many products or whether its feeding is activated by specific chemicals, and whether its Grs are involved in feeding behavior. It is difficult to determine the food preferences of T. castaneum based on dietary intake due to a lack of appropriate methodology. This study established a novel dietary intake estimation method using gypsum, designated the TribUTE (Tribolium Urges To Eat) assay. For this assay, T. castaneum adults were fed a gypsum block without added organic compounds. Sweet preference was determined by adding sweeteners and measuring the amount of gypsum in the excreta. Mannitol was the strongest activator of T. castaneum dietary intake. In a Xenopus oocyte expression, TcGr20 was found to be responsible for mannitol and sorbitol responses, but not for responses to other tested non-volatile compounds. The EC50 values of TcGr20 for mannitol and sorbitol were 72.6 mM and 90.6 mM, respectively, suggesting that TcGr20 is a feasible receptor for the recognition of mannitol at lower concentrations. We used RNAi and the TribUTE assay to examine whether TcGr20 expression was involved in mannitol recognition. The amounts of excreta in TcGr20 dsRNA-injected adults decreased significantly, despite the presence of mannitol, compared to control adults. Taken together, our results indicate that T. castaneum adults recognized mannitol/sorbitol using the TcGr20 receptor, thereby facilitating the dietary intake of these compounds

    A Novel Member of the Trehalose Transporter Family Functions as an H+-Dependent Trehalose Transporter in the Reabsorption of Trehalose in Malpighian Tubules

    Get PDF
    In insects, Malpighian tubules are functionally analogous to mammalian kidneys in that they not only are essential to excrete waste molecules into the lumen but also are responsible for the reabsorption of indispensable molecules, such as sugars, from the lumen to the principal cells. Among sugars, the disaccharide trehalose is highly important to insects because it is the main hemolymph sugar to serve as a source of energy and carbon. The trehalose transporter TRET1 participates in the transfer of newly synthesized trehalose from the fat body across the cellular membrane into the hemolymph. Although transport proteins must play a pivotal role in the reabsorption of trehalose in Malpighian tubules, the molecular context underlying this process remains obscure. Previously, we identified a Tret1 homolog (Nlst8) that is expressed principally in the Malpighian tubules of the brown planthopper (BPH). Here, we used the Xenopus oocyte expression system to show that NlST8 exerts trehalose transport activity that is elevated under low pH conditions. These functional assays indicate that Nlst8 encodes a proton-dependent trehalose transporter (H-TRET1). To examine the involvement of Nlst8 in trehalose reabsorption, we analyzed the sugar composition of honeydew by using BPH with RNAi gene silencing. Trehalose was detected in the honeydew as waste excreted from Nlst8-dsRNA-injected BPH under hyperglycemic conditions. However, trehalose was not expelled from GFP-dsRNA-injected BPH even under hyperglycemic conditions. We conclude that NlST8 could participate in trehalose reabsorption driven by a H(+) gradient from the lumen to the principal cells of the Malpighian tubules
    corecore