77 research outputs found

    Weight Loss Associated With Different Patterns of Self-Monitoring Using the Mobile Phone App My Meal Mate

    Get PDF
    Background: Obesity is a major global public health issue due to its association with a number of serious chronic illnesses and its high economic burden to health care providers. Self-monitoring of diet has been consistently linked to weight loss. However, there is limited evidence about how frequently individuals need to monitor their diet for optimal weight loss. Objective: The aim of this paper is to describe app usage frequency and pattern in the mobile phone arm of a previously conducted randomized controlled trial. The relationship between frequency and pattern of electronic dietary self-monitoring and weight loss is also investigated. Methods: A randomized pilot trial comparing three methods of self-monitoring (mobile phone app, paper diary, Web-based) was previously conducted. Trial duration was 6 months. The mobile phone app My Meal Mate features an electronic food diary and encourages users to self-monitor their dietary intake. All food consumption data were automatically uploaded with a time and date stamp. Post hoc regression analysis of app usage patterns was undertaken in the My Meal Mate group (n=43; female: 77%, 33/43; white: 100%, 43/43; age: mean 41, SD 9 years; body mass index: mean 34, SD 4 kg/m2) to explore the relationship between frequency and pattern of electronic dietary self-monitoring and weight loss. Baseline characteristics of participants were also investigated to identify any potential predictors of dietary self-monitoring. Results: Regression analysis showed that those in the highest frequency-of-use category (recorded ≥129 days on the mobile phone app) had a −6.4 kg (95% CI −10.0 to −2.9) lower follow-up weight (adjusted for baseline weight) than those in the lowest frequency-of-use category (recorded ≤42 days; P<.001). Long-term intermittent monitoring over 6 months appeared to facilitate greater mean weight loss than other patterns of electronic self-monitoring (ie, monitoring over the short or moderate term and stopping and consistently monitoring over consecutive days). Participant characteristics such as age, baseline weight, sex, ethnicity, conscientiousness, and consideration of future consequences were not statistically associated with extent of self-monitoring. Conclusions: The results of this post hoc exploratory analysis indicate that duration and frequency of app use is associated with improved weight loss, but further research is required to identify whether there are participant characteristics that would reliably predict those who are most likely to regularly self-monitor their diet

    Yield Measurements for ^7Be and ^<10>Be Productions from ^<nat>Cu, ^<nat>Ag and ^<197>Au by Bremsstrahlung Irradiation at E_0=200 MeV(II. Radiochemistry)

    Get PDF
    The yields of ^7Be and ^Be produced by bremsstrahlung having a maximum energy (E_0) of 200 MeV in ^Cu, ^Ag and ^Au targets were investigated by the AMS technique at MALT of the University of Tokyo. It was found that the yields at E_0 = 200 MeV were much lower than those at E_0 ≧250 MeV, obtained in our previous work. A change in the yields of the fragmentation component in the target-mass dependence was observed at E_0=200 MeV when compared with those at E_0≧250 MeV. However, the ratios of the fragmentation yield of ^Be to that of ^7Be remained unchanged throughout the concerned E_0

    Use of technology in children's dietary assessment

    Get PDF
    Background: Information on dietary intake provides some of the most valuable insights for mounting intervention programmes for the prevention of chronic diseases. With the growing concern about adolescent overweight, the need to accurately measure diet becomes imperative. Assessment among adolescents is problematic as this group has irregular eating patterns and they have less enthusiasm for recording food intake. Subjects/Methods: We used qualitative and quantitative techniques among adolescents to assess their preferences for dietary assessment methods.Results: Dietary assessment methods using technology, for example, a personal digital assistant (PDA) or a disposable camera, were preferred over the pen and paper food record. Conclusions: There was a strong preference for using methods that incorporate technology such as capturing images of food. This suggests that for adolescents, dietary methods that incorporate technology may improve cooperation and accuracy. Current computing technology includes higher resolution images, improved memory capacity and faster processors that allow small mobile devices to process information not previously possible. Our goal is to develop, implement and evaluate a mobile device (for example, PDA, mobile phone) food record that will translate to an accurate account of daily food and nutrient intake among adolescents. This mobile computing device will include digital images, a nutrient database and image analysis for identification and quantification of food consumption. Mobile computing devices provide a unique vehicle for collecting dietary information that reduces the burden on record keepers. Images of food can be marked with a variety of input methods that link the item for image processing and analysis to estimate the amount of food. Images before and after the foods are eaten can estimate the amount of food consumed. The initial stages and potential of this project will be described

    Validation of a digital photographic method for assessment of dietary quality of school lunch sandwiches brought from home.

    Get PDF
    Background: It is a challenge to assess children&#x0027;s dietary intake. The digital photographic method (DPM) may be an objective method that can overcome some of these challenges. Objective: The aim of this study was to evaluate the validity and reliability of a DPM to assess the quality of dietary intake from school lunch sandwiches brought from home among children aged 7&#x2013;13 years. Design: School lunch sandwiches (n=191) were prepared to represent randomly selected school lunch sandwiches from a large database. All components were weighed to provide an objective measure of the composition. The lunches were photographed using a standardised DPM. From the digital images, the dietary components were estimated by a trained image analyst using weights or household measures and the dietary quality was assessed using a validated Meal Index of Dietary Quality (Meal IQ). The dietary components and the Meal IQ obtained from the digital images were validated against the objective weighed foods of the school lunch sandwiches. To determine interrater reliability, the digital images were evaluated by a second image analyst. Results: Correlation coefficients between the DPM and the weighed foods ranged from 0.89 to 0.97. The proportion of meals classified in the same or an adjacent quartile ranged from 98% (starch) to 100% (fruits, vegetables, fish, whole grain, and Meal IQ). There was no statistical difference between fish, fat, starch, whole grains, and Meal IQ using the two methods. Differences were found for fruits and vegetables; Bland&#x2013;Altman analyses showed a tendency to underestimate high amounts of these variables using the DPM. For interrater reliability, kappa statistics ranged from 0.59 to 0.82 across the dietary components and Meal IQ. Conclusions: The standardised DPM is a valid and reliable method for assessing the dietary quality of school lunch sandwiches brought from home

    The second data release from the European Pulsar Timing Array IV. Search for continuous gravitational wave signals

    Full text link
    We present the results of a search for continuous gravitational wave signals (CGWs) in the second data release (DR2) of the European Pulsar Timing Array (EPTA) collaboration. The most significant candidate event from this search has a gravitational wave frequency of 4-5 nHz. Such a signal could be generated by a supermassive black hole binary (SMBHB) in the local Universe. We present the results of a follow-up analysis of this candidate using both Bayesian and frequentist methods. The Bayesian analysis gives a Bayes factor of 4 in favor of the presence of the CGW over a common uncorrelated noise process, while the frequentist analysis estimates the p-value of the candidate to be 1%, also assuming the presence of common uncorrelated red noise. However, comparing a model that includes both a CGW and a gravitational wave background (GWB) to a GWB only, the Bayes factor in favour of the CGW model is only 0.7. Therefore, we cannot conclusively determine the origin of the observed feature, but we cannot rule it out as a CGW source. We present results of simulations that demonstrate that data containing a weak gravitational wave background can be misinterpreted as data including a CGW and vice versa, providing two plausible explanations of the EPTA DR2 data. Further investigations combining data from all PTA collaborations will be needed to reveal the true origin of this feature.Comment: 12 figures, 15 pages, to be submitte

    The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals

    Get PDF
    We present the results of the search for an isotropic stochastic gravitational wave background (GWB) at nanohertz frequencies using the second data release of the European Pulsar Timing Array (EPTA) for 25 millisecond pulsars and a combination with the first data release of the Indian Pulsar Timing Array (InPTA). A robust GWB detection is conditioned upon resolving the Hellings-Downs angular pattern in the pairwise cross-correlation of the pulsar timing residuals. Additionally, the GWB is expected to yield the same (common) spectrum of temporal correlations across pulsars, which is used as a null hypothesis in the GWB search. Such a common-spectrum process has already been observed in pulsar timing data. We analysed (i) the full 24.7-year EPTA data set, (ii) its 10.3-year subset based on modern observing systems, (iii) the combination of the full data set with the first data release of the InPTA for ten commonly timed millisecond pulsars, and (iv) the combination of the 10.3-year subset with the InPTA data. These combinations allowed us to probe the contributions of instrumental noise and interstellar propagation effects. With the full data set, we find marginal evidence for a GWB, with a Bayes factor of four and a false alarm probability of 4%. With the 10.3-year subset, we report evidence for a GWB, with a Bayes factor of 60 and a false alarm probability of about 0.1% (≳3σ significance). The addition of the InPTA data yields results that are broadly consistent with the EPTA-only data sets, with the benefit of better noise modelling. Analyses were performed with different data processing pipelines to test the consistency of the results from independent software packages. The latest EPTA data from new generation observing systems show non-negligible evidence for the GWB. At the same time, the inferred spectrum is rather uncertain and in mild tension with the common signal measured in the full data set. However, if the spectral index is fixed at 13/3, the two data sets give a similar amplitude of (2.5 ± 0.7) × 10−15 at a reference frequency of 1 yr−1. Further investigation of these issues is required for reliable astrophysical interpretations of this signal. By continuing our detection efforts as part of the International Pulsar Timing Array (IPTA), we expect to be able to improve the measurement of spatial correlations and better characterise this signal in the coming years

    The second data release from the European Pulsar Timing Array: II. Customised pulsar noise models for spatially correlated gravitational waves

    Get PDF
    Aims. The nanohertz gravitational wave background (GWB) is expected to be an aggregate signal of an ensemble of gravitational waves emitted predominantly by a large population of coalescing supermassive black hole binaries in the centres of merging galaxies. Pulsar timing arrays (PTAs), which are ensembles of extremely stable pulsars at approximately kiloparsec distances precisely monitored for decades, are the most precise experiments capable of detecting this background. However, the subtle imprints that the GWB induces on pulsar timing data are obscured by many sources of noise that occur on various timescales. These must be carefully modelled and mitigated to increase the sensitivity to the background signal.Methods. In this paper, we present a novel technique to estimate the optimal number of frequency coefficients for modelling achromatic and chromatic noise, while selecting the preferred set of noise models to use for each pulsar. We also incorporated a new model to fit for scattering variations in the Bayesian pulsar timing package temponest. These customised noise models enable a more robust characterisation of single-pulsar noise. We developed a software package based on tempo2 to create realistic simulations of European Pulsar Timing Array (EPTA) datasets that allowed us to test the efficacy of our noise modelling algorithms.Results. Using these techniques, we present an in-depth analysis of the noise properties of 25 millisecond pulsars (MSPs) that form the second data release (DR2) of the EPTA and investigate the effect of incorporating low-frequency data from the Indian Pulsar Timing Array collaboration for a common sample of ten MSPs. We used two packages, enterprise and temponest, to estimate our noise models and compare them with those reported using EPTA DR1. We find that, while in some pulsars we can successfully disentangle chromatic from achromatic noise owing to the wider frequency coverage in DR2, in others the noise models evolve in a much more complicated way. We also find evidence of long-term scattering variations in PSR J1600-3053. Through our simulations, we identify intrinsic biases in our current noise analysis techniques and discuss their effect on GWB searches. The analysis and results discussed in this article directly help to improve the sensitivity to the GWB signal and they are already being used as part of global PTA efforts

    The second data release from the European Pulsar Timing Array: IV. Implications for massive black holes, dark matter, and the early Universe

    Get PDF
    The European Pulsar Timing Array (EPTA) and Indian Pulsar Timing Array (InPTA) collaborations have measured a low-frequency common signal in the combination of their second and first data releases, respectively, with the correlation properties of a gravitational wave background (GWB). Such a signal may have its origin in a number of physical processes including a cosmic population of inspiralling supermassive black hole binaries (SMBHBs); inflation, phase transitions, cosmic strings, and tensor mode generation by the non-linear evolution of scalar perturbations in the early Universe; and oscillations of the Galactic potential in the presence of ultra-light dark matter (ULDM). At the current stage of emerging evidence, it is impossible to discriminate among the different origins. Therefore, for this paper, we consider each process separately, and investigated the implications of the signal under the hypothesis that it is generated by that specific process. We find that the signal is consistent with a cosmic population of inspiralling SMBHBs, and its relatively high amplitude can be used to place constraints on binary merger timescales and the SMBH-host galaxy scaling relations. If this origin is confirmed, this would be the first direct evidence that SMBHBs merge in nature, adding an important observational piece to the puzzle of structure formation and galaxy evolution. As for early Universe processes, the measurement would place tight constraints on the cosmic string tension and on the level of turbulence developed by first-order phase transitions. Other processes would require non-standard scenarios, such as a blue-tilted inflationary spectrum or an excess in the primordial spectrum of scalar perturbations at large wavenumbers. Finally, a ULDM origin of the detected signal is disfavoured, which leads to direct constraints on the abundance of ULDM in our Galaxy
    corecore