49 research outputs found

    Silverrush. Xii. Intensity Mapping for Ly Α Emission Extending over 100-1000 Comoving Kpc Around Z ∼2-7 Laes with Subaru Hsc-Ssp and Chorus Data

    Get PDF
    We conduct intensity mapping to probe for extended diffuse Lyα emission around Lyα emitters (LAEs) at z ∼2-7, exploiting very deep (∼26 mag at 5σ) and large-area (∼4.5 deg2) Subaru/Hyper Suprime-Cam narrowband (NB) images and large LAE catalogs consisting of a total of 1540 LAEs at z = 2.2, 3.3, 5.7, and 6.6 obtained by the HSC-SSP and CHORUS projects. We calculate the spatial correlations of these LAEs with ∼1-2-billion-pixel flux values of the NB images, deriving the average Lyα surface brightness (SBLyα ) radial profiles around the LAEs. By carefully estimating systematics such as fluctuations of sky background and point-spread functions, we detect Lyα emission at 100-1000 comoving kpc around z = 3.3 and 5.7 LAEs at the 3.2σ and 3.7σ levels, respectively, and tentatively (=2.0σ) at z = 6.6. The emission is as diffuse as ∼10-20-10-19 erg s-1 cm-2 arcsec-2 and extended beyond the virial radius of a dark matter halo with a mass of 1011 M. While the observed SBLyα profiles have similar amplitudes at z = 2.2-6.6 within the uncertainties, the intrinsic SBLyα profiles (corrected for the cosmological dimming effect) increase toward high redshifts. This trend may be explained by increasing hydrogen gas density due to the evolution of the cosmic volume. Comparisons with theoretical models suggest that extended Lyα emission around an LAE is powered by resonantly scattered Lyα photons in the CGM and IGM that originate from the inner part of the LAE and/or neighboring galaxies around the LAE

    RELICS: High-Resolution Constraints on the Inner Mass Distribution of the z=0.83 Merging Cluster RXJ0152.7-1357 from strong lensing

    Get PDF
    Strong gravitational lensing (SL) is a powerful means to map the distribution of dark matter. In this work, we perform a SL analysis of the prominent X-ray cluster RXJ0152.7-1357 (z=0.83, also known as CL 0152.7-1357) in \textit{Hubble Space Telescope} images, taken in the framework of the Reionization Lensing Cluster Survey (RELICS). On top of a previously known z=3.93z=3.93 galaxy multiply imaged by RXJ0152.7-1357, for which we identify an additional multiple image, guided by a light-traces-mass approach we identify seven new sets of multiply imaged background sources lensed by this cluster, spanning the redshift range [1.79-3.93]. A total of 25 multiple images are seen over a small area of ~0.4 arcmin2arcmin^2, allowing us to put relatively high-resolution constraints on the inner matter distribution. Although modestly massive, the high degree of substructure together with its very elongated shape make RXJ0152.7-1357 a very efficient lens for its size. This cluster also comprises the third-largest sample of z~6-7 candidates in the RELICS survey. Finally, we present a comparison of our resulting mass distribution and magnification estimates with those from a Lenstool model. These models are made publicly available through the MAST archive.Comment: 15 Pages, 7 Figures, 4 Tables Accepted for publication in Ap

    A Candidate z10z\sim10 Galaxy Strongly Lensed into a Spatially Resolved Arc

    Full text link
    The most distant galaxies known are at z~10-11, observed 400-500 Myr after the Big Bang. The few z~10-11 candidates discovered to date have been exceptionally small- barely resolved, if at all, by the Hubble Space Telescope. Here we present the discovery of SPT0615-JD, a fortuitous z~10 (z_phot=9.9+/-0.6) galaxy candidate stretched into an arc over ~2.5" by the effects of strong gravitational lensing. Discovered in the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury program and companion S-RELICS Spitzer program, this candidate has a lensed H-band magnitude of 25.7+/-0.1 AB mag. With a magnification of \mu~4-7 estimated from our lens models, the de-lensed intrinsic magnitude is 27.6+/-0.3 AB mag, and the half-light radius is r_e<0.8 kpc, both consistent with other z>9 candidates. The inferred stellar mass (log [M* /M_Sun]=9.7^{+0.7}_{-0.5}) and star formation rate (\log [SFR/M_Sun yr^{-1}]=1.3^{+0.2}_{-0.3}) indicate that this candidate is a typical star-forming galaxy on the z>6 SFR-M* relation. We note that three independent lens models predict two counterimages, at least one of which should be of a similar magnitude to the arc, but these counterimages are not yet detected. Counterimages would not be expected if the arc were at lower redshift. However, the only spectral energy distributions capable of fitting the Hubble and Spitzer photometry well at lower redshifts require unphysical combinations of z~2 galaxy properties. The unprecedented lensed size of this z~10 candidate offers the potential for the James Webb Space Telescope to study the geometric and kinematic properties of a galaxy observed 500 Myr after the Big Bang.Comment: 7 pages, 4 figures. Submitted to ApJ Letter

    RELICS: Strong Lensing analysis of the galaxy clusters Abell S295, Abell 697, MACS J0025.4-1222, and MACS J0159.8-0849

    Get PDF
    We present a strong-lensing analysis of four massive galaxy clusters imaged with the Hubble Space Telescope in the Reionization Lensing Cluster Survey. We use a Light-Traces-Mass technique to uncover sets of multiply images and constrain the mass distribution of the clusters. These mass models are the first published for Abell S295 and MACS J0159.8-0849, and are improvements over previous models for Abell 697 and MACS J0025.4-1222. Our analysis for MACS J0025.4-1222 and Abell S295 shows a bimodal mass distribution supporting the merger scenarios proposed for these clusters. The updated model for MACS J0025.4-1222 suggests a substantially smaller critical area than previously estimated. For MACS J0159.8-0849 and Abell 697 we find a single peak and relatively regular morphology, revealing fairly relaxed clusters. Despite being less prominent lenses, three of these clusters seem to have lensing strengths, i.e. cumulative area above certain magnification, similar to the Hubble Frontier Fields clusters (e.g., A(μ>5\mu>5) 13\sim 1-3 arcmin2^2, A(μ>10\mu>10) 0.51.5\sim 0.5-1.5 arcmin2^2), which in part can be attributed to their merging configurations. We make our lens models publicly available through the Mikulski Archive for Space Telescopes. Finally, using Gemini-N/GMOS spectroscopic observations we detect a single emission line from a high-redshift J12525.7J_{125}\simeq25.7 galaxy candidate lensed by Abell 697. While we cannot rule out a lower-redshift solution, we interpret the line as Lyα\alpha at z=5.800±0.001z=5.800\pm 0.001, in agreement with its photometric redshift and dropout nature. Within this scenario we measure a Lyα\alpha rest-frame equivalent width of 52±2252\pm22 \AA, and an observed Gaussian width of 117±15117\pm 15 km/s.Comment: 23 pages, 16 figures; V2, accepted for publication in Ap

    RELICS: A Very Large (θE40"\theta_{E}\sim40") Cluster Lens -- RXC J0032.1+1808

    Full text link
    Extensive surveys with the \textit{Hubble Space Telescope} (HST) over the past decade, targeting some of the most massive clusters in the sky, have uncovered dozens of galaxy-cluster strong lenses. The massive cluster strong-lens scale is typically \theta_{E}\sim10\arcsec to \sim30-35\arcsec, with only a handful of clusters known with Einstein radii \theta_{E}\sim40\arcsec or above (for zsource=2z_{source}=2, nominally). Here we report another very large cluster lens, RXC J0032.1+1808 (z=0.3956z=0.3956), the second richest cluster in the redMapper cluster catalog and the 85th most massive cluster in the Planck Sunyaev-Zel'dovich catalog. With our Light-Traces-Mass and fully parametric (dPIEeNFW) approaches, we construct strong lensing models based on 18 multiple images of 5 background galaxies newly identified in the \textit{Hubble} data mainly from the \textit{Reionization Lensing Cluster Survey} (RELICS), in addition to a known sextuply imaged system in this cluster. Furthermore, we compare these models to Lenstool and GLAFIC models that were produced independently as part of the RELICS program. All models reveal a large effective Einstein radius of \theta_{E}\simeq40\arcsec (zsource=2z_{source}=2), owing to the obvious concentration of substructures near the cluster center. Although RXC J0032.1+1808 has a very large critical area and high lensing strength, only three magnified high-redshift candidates are found within the field targeted by RELICS. Nevertheless, we expect many more high-redshift candidates will be seen in wider and deeper observations with \textit{Hubble} or \emph{JWST}. Finally, the comparison between several algorithms demonstrates that the total error budget is largely dominated by systematic uncertainties.Comment: 23 pages, accepted for publication in Ap

    EMPRESS. III. Morphology, Stellar Population, and Dynamics of Extremely Metal Poor Galaxies (EMPGs): Are EMPGs Local Analogs of High-zz Young Galaxies?

    Full text link
    We present the morphology and stellar population of 27 extremely metal poor galaxies (EMPGs) at z0z\sim0 with metallicities of 0.01--0.1 Z_{\odot}. We conduct multi-component surface brightness (SB) profile fitting for the deep Subaru/HSC ii-band images of the EMPGs with the {\sc Galfit} software, carefully removing the SB contributions of tails. We find that the EMPGs with a median stellar mass of log(M/M)=6.0\log(M_{*}/{\rm M}_{\odot})=6.0 have a median S{\'e}rsic index of n=1.1n=1.1 and a median effective radius of re=200r_{\rm e}=200 pc, suggesting that typical EMPGs have very compact disk. We compare the EMPGs with z6z\sim6 galaxies and local galaxies on the size-mass (rer_{\rm e}-MM_*) diagram, and identify that the majority of the EMPGs have a rer_{\rm e}-MM_* relation similar to z0z\sim0 star-forming galaxies rather than z6z\sim6 galaxies. Not every EMPG is a local analog of high-zz young galaxies in the rer_{\rm e}-MM_* relation. A spectrum of one pair of EMPG and tail, so far available, indicates that the tail is dynamically related to the EMPG with a median velocity difference of ΔV=101±32\Delta V=101\pm32 km s1^{-1}. This moderately-large ΔV\Delta V cannot be explained by the dynamics of the tail, but likely by the infall on the tail. For the first time, we may identify the metal-poor star-forming system just now infalling into the tail.Comment: ApJ in Pres

    RELICS: Reionization Lensing Cluster Survey

    Get PDF
    Large surveys of galaxy clusters with the Hubble and Spitzer Space Telescopes, including CLASH and the Frontier Fields, have demonstrated the power of strong gravitational lensing to efficiently deliver large samples of high-redshift galaxies. We extend this strategy through a wider, shallower survey named RELICS, the Reionization Lensing Cluster Survey. This survey, described here, was designed primarily to deliver the best and brightest high-redshift candidates from the first billion years after the Big Bang. RELICS observed 41 massive galaxy clusters with Hubble and Spitzer at 0.4-1.7um and 3.0-5.0um, respectively. We selected 21 clusters based on Planck PSZ2 mass estimates and the other 20 based on observed or inferred lensing strength. Our 188-orbit Hubble Treasury Program obtained the first high-resolution near-infrared images of these clusters to efficiently search for lensed high-redshift galaxies. We observed 46 WFC3/IR pointings (~200 arcmin^2) with two orbits divided among four filters (F105W, F125W, F140W, and F160W) and ACS imaging as needed to achieve single-orbit depth in each of three filters (F435W, F606W, and F814W). As previously reported by Salmon et al., we discovered 322 z ~ 6 - 10 candidates, including the brightest known at z ~ 6, and the most distant spatially-resolved lensed arc known at z ~ 10. Spitzer IRAC imaging (945 hours awarded, plus 100 archival) has crucially enabled us to distinguish z ~ 10 candidates from z ~ 2 interlopers. For each cluster, two HST observing epochs were staggered by about a month, enabling us to discover 11 supernovae, including 3 lensed supernovae, which we followed up with 20 orbits from our program. We delivered reduced HST images and catalogs of all clusters to the public via MAST and reduced Spitzer images via IRSA. We have also begun delivering lens models of all clusters, to be completed before the JWST GO call for proposals.Comment: 29 pages, 6 figures, submitted to ApJ. For reduced images, catalogs, lens models, and more, see relics.stsci.ed

    Flat/film infinity coils and backside defect searching

    No full text

    Paracelsus and the Magical Renaissance

    No full text
    corecore