5 research outputs found

    Assessing the size and uncertainty of remaining carbon budgets

    Get PDF
    The remaining carbon budget (RCB), the net amount of CO2 humans can still emit without exceeding a chosen global warming limit, is often used to evaluate political action against the goals of the Paris Agreement. RCB estimates for 1.5 °C are small, and minor changes in their calculation can therefore result in large relative adjustments. Here we evaluate recent RCB assessments by the IPCC and present more recent data, calculation refinements and robustness checks that increase confidence in them. We conclude that the RCB for a 50% chance of keeping warming to 1.5 °C is around 250 GtCO2 as of January 2023, equal to around six years of current CO2 emissions. For a 50% chance of 2 °C the RCB is around 1,200 GtCO2. Key uncertainties affecting RCB estimates are the contribution of non-CO2 emissions, which depends on socioeconomic projections as much as on geophysical uncertainty, and potential warming after net zero CO2

    Assessing the size and uncertainty of remaining carbon budgets

    Get PDF
    The remaining carbon budget (RCB), the net amount of CO₂ humans can still emit without exceeding a chosen global warming limit, is often used to evaluate political action against the goals of the Paris Agreement. RCB estimates for 1.5 °C are small, and minor changes in their calculation can therefore result in large relative adjustments. Here we evaluate recent RCB assessments by the IPCC and present more recent data, calculation refinements and robustness checks that increase confidence in them. We conclude that the RCB for a 50% chance of keeping warming to 1.5 °C is around 250 GtCO₂ as of January 2023, equal to around six years of current CO₂ emissions. For a 50% chance of 2 °C the RCB is around 1,200 GtCO₂. Key uncertainties affecting RCB estimates are the contribution of non-CO₂ emissions, which depends on socioeconomic projections as much as on geophysical uncertainty, and potential warming after net zero CO₂

    Integrated assessment modelling of degrowth scenarios for Australia

    Get PDF
    Empirical evidence increasingly indicates that to achieve sufficiently rapid decarbonisation, high-income economies may need to adopt degrowth policies, scaling down less-necessary forms of production and demand, in addition to rapid deployment of renewables. Calls have been made for degrowth climate mitigation scenarios. However, so far these have not been modelled within the established Integrated Assessment Models (IAMs) for future scenario analysis of the energy-economy-emission nexus, partly because the architecture of these IAMs has growth ‘baked in’. In this work, we modify one of the common IAMs–MESSAGEix–to make it compatible with degrowth scenarios. We simulate scenarios featuring low and negative growth in a high-income economy (Australia). We achieve this by detaching MESSAGEix from its monotonically growing utility function, and by formulating an alternative utility function based on non-monotonic preferences. The outcomes from such modified scenarios reflect some characteristics of degrowth futures, including reduced aggregate production and declining energy and emissions. However, further work is needed to explore other key degrowth features such as sectoral differentiation, redistribution, and provisioning system transformation

    Changes in IPCC Scenario Assessment Emulators Between SR1.5 and AR6 Unraveled

    Get PDF
    The IPCC's scientific assessment of the timing of net-zero emissions and 2030 emission reduction targets consistent with limiting warming to 1.5°C or 2°C rests on large scenario databases. Updates to this assessment, such as between the IPCC's Special Report on Global Warming of 1.5°C (SR1.5) of warming and the Sixth Assessment Report (AR6), are the result of intertwined, sometimes opaque, factors. Here we isolate one factor: the Earth System Model emulators used to estimate the global warming implications of scenarios. We show that warming projections using AR6-calibrated emulators are consistent, to within around 0.1°C, with projections made by the emulators used in SR1.5. The consistency is due to two almost compensating changes: the increase in assessed historical warming between SR1.5 (based on AR5) and AR6, and a reduction in projected warming due to improved agreement between the emulators' response to emissions and the assessment to which it is calibrated

    Downscaling down under: towards degrowth in integrated assessment models

    Get PDF
    IPCC reports, to date, have not featured ambitious mitigation scenarios with degrowth in high-income regions. Here, using MESSAGEix-Australia, we create 51 emissions scenarios for Australia with near-term GDP growth going from +3%/year to rapid reductions (−5%/year) to explore how a traditional integrated assessment model (IAM) represents degrowth from an economic starting point, not just energy demand reduction. We find that stagnating GDP per capita reduces the mid-century need for upscaling solar and wind energy by about 40% compared to the SSP2 growth baseline, and limits future material needs for renewables. Still, solar and wind energy in 2030 is more than quadruple that of 2020. Faster reductions in energy demand may entail higher socio-cultural feasibility concerns, depending on the policies involved. Strong reductions in inequality reduce the risk of lowered access to decent living services. We discuss research needs and possible IAM extensions to improve post-growth and degrowth scenario modelling
    corecore