20 research outputs found

    Microwave Imaging Using CMOS Integrated Circuits with Rotating 4 × 4 Antenna Array on a Breast Phantom

    Get PDF
    A digital breast cancer detection system using 65 nm technology complementary metal oxide semiconductor (CMOS) integrated circuits with rotating 4 × 4 antenna array is presented. Gaussian monocycle pulses are generated by CMOS logic circuits and transmitted by a 4 × 4 matrix antenna array via two CMOS single-pole-eight-throw (SP8T) switching matrices. Radar signals are received and converted to digital signals by CMOS equivalent time sampling circuits. By rotating the 4 × 4 antenna array, the reference signal is obtained by averaging the waveforms from various positions to extract the breast phantom target response. A signal alignment algorithm is proposed to compensate the phase shift of the signals caused by the system jitter. After extracting the scattered signal from the target, a bandpass filter is applied to reduce the noise caused by imperfect subtraction between original and the reference signals. The confocal imaging algorithm for rotating antennas is utilized to reconstruct the breast image. A 1 cm3 bacon block as a cancer phantom target in a rubber substrate as a breast fat phantom can be detected with reduced artifacts

    I(Re)2-WiNoC: Exploring scalable wireless on-chip micronetworks for heterogeneous embedded many-core SoCs

    Get PDF
    Modern embedded SoC design uses a rapidly increasing number of processing units for ubiquitous computing, forming the so-called embedded many-core SoCs (McSoC). Such McSoC devices allow superior performance gains while side-stepping the power and heat dissipation limitations of clock frequency scaling. The main advantage lies in the exploitation of parallelism, distributively and massively. Consequently, the on-chip communication fabric becomes the performance determinant. To bridge the widening gap between computation requirements and communication efficiency faced by gigascale McSoCs in the upcoming billion-transistor era, a new on-chip communication system, dubbed Wireless Network-on-Chip (WiNoC), has been proposed by using the recently developed RF interconnect technology. With the high data-rate, low power and ultra-short range interconnection provided by UWB technology, the WiNoC design paradigm calls for effective solutions to overhaul the on-chip communication infrastructure of gigascale McSoCs. In this work, an irregular and reconfigurable WiNoC platform is proposed to tackle ever increasing complexity, density and heterogeneity challenges. A flexible RF infrastructure is established where RF nodes are properly distributed and IP cores are clustered. Consequently, a performance-cost effective topology is formed. A region-aided routing scheme is further deigned and implemented to realize loop-free, minimum path cost and high scalability for irregular WiNoC infrastructure. To implement the data transmission protocol, the RF microarchitecture of WiNoC is developed where the RF nodes are designed to fulfill the functions of distributed table routing, multi-channel arbitration, virtual output queuing, and distributed flow control. Our simulation studies based on synthetic traffics demonstrate the network efficiency and scalability of WiNoC
    corecore