11 research outputs found

    Assessment of the Off-season Rainfall of January to February 2020 and Its Socio Economic Implications in Tanzania: A Case Study of the Northern Coast of Tanzania

    Get PDF
    This article examines the off season rainfall in northern coast Tanzania (NCT) including Zanzibar which occurred in January and February 2020 (JF). Like the JF rainfalls of 2001, 2004, 2010, 2016 and 2018, the JF (2020) rainfall was more unique in damages including loss of lives, properties and infrastructures. The study used the NCEP/NCAR reanalysis data to examine the cause of uniqueness of JF rainfall in 2001, 2004, 2010, 2016, 2018 and 2020 over NCT and Zanzibar. These datasets include monthly mean u, v wind at 850, 700, 500, and 200 mb; SSTs, mean sea level pressure (MSLP) anomalies, Dipole Mode Index (DMI), and monthly rainfall from NCT and Zanzibar stations. Datasets were processed and calculated into long term, seasonal, and monthly averages, indeed, Precipitation Index (PI) was calculated. Correlation analysis between the rainfall (December to January), SST, DMI and 850 mb wind vectors; and long-term percentage contribution of investigated parameters was calculated. Results revealed significant positive and negative correlations between JF rainfall, SSTs and DMI. Moreover, JFs of 2004 and 2016 had higher rainfalls of 443 mm with percentage contribution of up to 406%, while January and February, 2020 had the highest of 269.1 and 101.1mm in Zanzibar and 295 and 146.1 mm over and NCT areas, with highest January long-term rainfall contribution of 356% in Zanzibar and 526% over NCT. The DJF (2019/20) had the highest rainfall record of 649.5 mm in Zanzibar contributing up to 286%, while JF 2000 rainfall had a good spatial and temporal distribution over most NCT areas. JF, 2020 rainfall had impacts of more than 20 people died in Lindi and several infrastructures including Kiyegeya Bridge in Morogoro were damaged. Conclusively, more research works on understanding the dynamics of wet and dry JF seasons should be conducted

    Teleconnections between seasonal rainfall in coastal Tanzania and Enso

    No full text
    Includes bibliographical references.The modulation of Tanzanian coastal rainfall variability with the El Nino/Southern oscillation (ENSO), the largest known mode of Southern Hemisphere climatic variation is examined. A rainfall index was formulated from variable Tanzanian coastal stations and used to identify the rainfall characteristics of each ENSO year. Monthly anomalies of selected meteorological fields were analyzed for El Niño/La Niña composites and each individual event to determine the mechanisms associated with seasonal rainfall over teh Tanzanian coast during ENSO years

    Spatial and Temporal Analysis of Rainfall and Temperature Extreme Indices in Tanzania

    No full text
    Climate extreme indices in Tanzania for the period 1961-2015 are analyzed using quality controlled daily rainfall, maximum and minimum temperatures data. RClimdex and National Climate Monitoring Products (NCMP) software developed by the commission for Climatology of the World Meteorological Organization (WMO) were used for the computation of the indices at the respective stations at monthly and annual time scales. The trends of the extreme indices averaged over the country were computed and tested for statistical significance. Results showed a widespread statistical significant increase in temperature extremes consistent with global warming patterns. On average, the annual timescale indicate that mean temperature anomaly has increased by 0.69ËšC, mean percentage of warm days has increased by 9.37%, and mean percentage of warm nights has increased by 12.05%. Mean percentage of cold days and nights have decreased by 7.64% and 10.00% respectively. A non-statistical significance decreasing trends in rainfall is depicted in large parts of the country. Increasing trend in percentage of warm days and warm nights is mostly depicted over the eastern parts of the country including areas around Kilimanjaro, Dar-es-Salaam, Zanzibar, Mtwara, and Mbeya regions. Some parts of the Lake Victoria Basin are also characterized by increasing trend of warm days and warm nights. However, non-statistical significant decreasing trends in the percentage of warm days and warm nights are depicted in the western parts of the country including Tabora and Kigoma regions and western side of the lake Victoria. These results indicate a clear dipole pattern in temperature dynamics between the eastern side of the country mainly influenced by the Indian Ocean and the western side of the country largely influenced by the moist Congo air mass associated with westerly winds. The results also indicate that days and nights are both getting warmer, though, the warming trend is much faster in the minimum temperature than maximum temperature.The paper is publishedThe authors wish to thank The Tanzania Meteorological Agency for providing data used in this study and WMO for providing guidance in the analysis of climate extreme in climate time series

    Trends of Plasmodium falciparum prevalence in two communities of Muheza district North-eastern Tanzania: correlation between parasite prevalence, malaria interventions and rainfall in the context of re-emergence of malaria after two decades of progressively declining transmission

    No full text
    Abstract Background Although the recent decline of malaria burden in some African countries has been attributed to a scale-up of interventions, such as bed nets (insecticide-treated bed nets, ITNs/long-lasting insecticidal nets, LLINs), the contribution of other factors to these changes has not been rigorously assessed. This study assessed the trends of Plasmodium falciparum prevalence in Magoda (1992–2017) and Mpapayu (1998–2017) villages of Muheza district, North-eastern Tanzania, in relation to changes in the levels of different interventions and rainfall patterns. Methods Individuals aged 0–19 years were recruited in cross-sectional surveys to determine the prevalence of P. falciparum infections in relation to different malaria interventions deployed, particularly bed nets and anti-malarial drugs. Trends and patterns of rainfall in Muheza for 35 years (from 1981 to 2016) were assessed to determine changes in the amount and pattern of rainfall and their possible impacts on P. falciparum prevalence besides of those ascribed to interventions. Results High prevalence (84–54%) was reported between 1992 and 2000 in Magoda, and 1998 and 2000 in Mpapayu, but it declined sharply from 2001 to 2004 (from 52.0 to 25.0%), followed by a progressive decline between 2008 and 2012 (to ≤ 7% in both villages). However, the prevalence increased significantly from 2013 to 2016 reaching ≥ 20.0% in 2016 (both villages), but declined in the two villages to ≤ 13% in 2017. Overall and age specific P. falciparum prevalence decreased in both villages over the years but with a peak prevalence shifting from children aged 5–9 years to those aged 10–19 years from 2008 onwards. Bed net coverage increased from  98% in 2001 and was ≥ 85.0% in 2004 in both villages; followed by fluctuations with coverage ranging from 35.0 to ≤ 98% between 2008 and 2017. The 12-month weighted anomaly standardized precipitation index showed a marked rainfall deficit in 1990–1996 and 1999–2010 coinciding with declining prevalence and despite relatively high bed net coverage from 2000. From 1992, the risk of infection decreased steadily up to 2013 when the lowest risk was observed (RR = 0.07; 95% CI 0.06–0.08, P < 0.001), but it was significantly higher during periods with positive rainfall anomalies (RR = 2.79; 95% CI 2.23–3.50, P < 0.001). The risk was lower among individuals not owning bed nets compared to those with nets (RR = 1.35; 95% CI 1.22–1.49, P < 0.001). Conclusions A decline in prevalence up to 2012 and resurgence thereafter was likely associated with changes in monthly rainfall, offset against changing malaria interventions. A sustained surveillance covering multiple factors needs to be undertaken and climate must be taken into consideration when relating control interventions to malaria prevalence
    corecore