121 research outputs found

    Calculus on the Sierpinski Gasket I: Polynomials, Exponentials and Power Series

    Get PDF
    We study the analog of power series expansions on the Sierpinski gasket, for analysis based on the Kigami Laplacian. The analog of polynomials are multiharmonic functions, which have previously been studied in connection with Taylor approximations and splines. Here the main technical result is an estimate of the size of the monomials analogous to x^n/n!. We propose a definition of entire analytic functions as functions represented by power series whose coefficients satisfy exponential growth conditions that are stronger than what is required to guarantee uniform convergence. We present a characterization of these functions in terms of exponential growth conditions on powers of the Laplacian of the function. These entire analytic functions enjoy properties, such as rearrangement and unique determination by infinite jets, that one would expect. However, not all exponential functions (eigenfunctions of the Laplacian) are entire analytic, and also many other natural candidates, such as the heat kernel, do not belong to this class. Nevertheless, we are able to use spectral decimation to study exponentials, and in particular to create exponentially decaying functions for negative eigenvalues

    Nontangential limits and Fatou-type theorems on post-critically finite self-similar sets

    Full text link
    In this paper we study the boundary limit properties of harmonic functions on R+×K\mathbb R_+\times K, the solutions u(t,x)u(t,x) to the Poisson equation 2ut2+Δu=0, \frac{\partial^2 u}{\partial t^2} + \Delta u = 0, where KK is a p.c.f. set and Δ\Delta its Laplacian given by a regular harmonic structure. In particular, we prove the existence of nontangential limits of the corresponding Poisson integrals, and the analogous results of the classical Fatou theorems for bounded and nontangentially bounded harmonic functions.Comment: 22 page

    Hydrodynamic limit for a zero-range process in the Sierpinski gasket

    Full text link
    We prove that the hydrodynamic limit of a zero-range process evolving in graphs approximating the Sierpinski gasket is given by a nonlinear heat equation. We also prove existence and uniqueness of the hydrodynamic equation by considering a finite-difference scheme.Comment: 24 pages, 1 figur

    Spectral analysis on infinite Sierpinski fractafolds

    Full text link
    A fractafold, a space that is locally modeled on a specified fractal, is the fractal equivalent of a manifold. For compact fractafolds based on the Sierpinski gasket, it was shown by the first author how to compute the discrete spectrum of the Laplacian in terms of the spectrum of a finite graph Laplacian. A similar problem was solved by the second author for the case of infinite blowups of a Sierpinski gasket, where spectrum is pure point of infinite multiplicity. Both works used the method of spectral decimations to obtain explicit description of the eigenvalues and eigenfunctions. In this paper we combine the ideas from these earlier works to obtain a description of the spectral resolution of the Laplacian for noncompact fractafolds. Our main abstract results enable us to obtain a completely explicit description of the spectral resolution of the fractafold Laplacian. For some specific examples we turn the spectral resolution into a "Plancherel formula". We also present such a formula for the graph Laplacian on the 3-regular tree, which appears to be a new result of independent interest. In the end we discuss periodic fractafolds and fractal fields

    Vibration Spectra of the mm-Tree Fractal

    Full text link
    We introduce a family of post-critically finite fractal trees indexed by the number of branches they possess. Then we produce a Laplacian operator on graph approximations to these fractals and use spectral decimation to describe the spectrum of the Laplacian on these trees. Lastly we consider the behavior of the spectrum as the number of branches increases.Comment: 21 pages, 4 figure

    A renormalisation approach to excitable reaction-diffusion waves in fractal media

    Get PDF
    Of fundamental importance to wave propagation in a wide range of physical phenomena is the structural geometry of the supporting medium. Recently, there have been several investigations on wave propagation in fractal media. We present here a renormalization approach to the study of reaction-diffusion (RD) wave propagation on finitely ramified fractal structures. In particular we will study a Rinzel-Keller (RK) type model, supporting travelling waves on a Sierpinski gasket (SG), lattice

    Fredholm Modules on P.C.F. Self-Similar Fractals and their Conformal Geometry

    Full text link
    The aim of the present work is to show how, using the differential calculus associated to Dirichlet forms, it is possible to construct Fredholm modules on post critically finite fractals by regular harmonic structures. The modules are d-summable, the summability exponent d coinciding with the spectral dimension of the generalized laplacian operator associated with the regular harmonic structures. The characteristic tools of the noncommutative infinitesimal calculus allow to define a d-energy functional which is shown to be a self-similar conformal invariant.Comment: 16 page

    From non-symmetric particle systems to non-linear PDEs on fractals

    Full text link
    We present new results and challenges in obtaining hydrodynamic limits for non-symmetric (weakly asymmetric) particle systems (exclusion processes on pre-fractal graphs) converging to a non-linear heat equation. We discuss a joint density-current law of large numbers and a corresponding large deviations principle.Comment: v2: 10 pages, 1 figure. To appear in the proceedings for the 2016 conference "Stochastic Partial Differential Equations & Related Fields" in honor of Michael R\"ockner's 60th birthday, Bielefel

    Upper estimate of martingale dimension for self-similar fractals

    Full text link
    We study upper estimates of the martingale dimension dmd_m of diffusion processes associated with strong local Dirichlet forms. By applying a general strategy to self-similar Dirichlet forms on self-similar fractals, we prove that dm=1d_m=1 for natural diffusions on post-critically finite self-similar sets and that dmd_m is dominated by the spectral dimension for the Brownian motion on Sierpinski carpets.Comment: 49 pages, 7 figures; minor revision with adding a referenc

    Physical Consequences of Complex Dimensions of Fractals

    Full text link
    It has recently been realized that fractals may be characterized by complex dimensions, arising from complex poles of the corresponding zeta function, and we show here that these lead to oscillatory behavior in various physical quantities. We identify the physical origin of these complex poles as the exponentially large degeneracy of the iterated eigenvalues of the Laplacian, and discuss applications in quantum mesoscopic systems such as oscillations in the fluctuation Σ2(E)\Sigma^2 (E) of the number of levels, as a correction to results obtained in Random Matrix Theory. We present explicit expressions for these oscillations for families of diamond fractals, also studied as hierarchical lattices.Comment: 4 pages, 3 figures; v2: references added, as published in Europhysics Letter
    corecore