293 research outputs found
Thermodynamics of the superfluid dilute Bose gas with disorder
We generalize the Beliaev-Popov diagrammatic technique for the problem of
interacting dilute Bose gas with weak disorder. Averaging over disorder is
implemented by the replica method. Low energy asymptotic form of the Green
function confirms that the low energy excitations of the superfluid dirty Boson
system are sound waves with velocity renormalized by the disorder and
additional dissipation due to the impurity scattering. We find the
thermodynamic potential and the superfluid density at any temperature below the
superfluid transition temperature and derive the phase diagram in temperature
vs. disorder plane.Comment: 4 page
Effect of random on-site energies on the critical temperature of a lattice Bose gas
We study the effect of random on-site energies on the critical temperature of
a non-interacting Bose gas on a lattice. In our derivation the on-site energies
are distributed according a Gaussian probability distribution function having
vanishing average and variance . By using the replicated action obtained
by averaging on the disorder, we perform a perturbative expansion for the Green
functions of the disordered system. We evaluate the shift of the chemical
potential induced by the disorder and we compute, for , the
critical temperature for condensation. We find that, for large filling,
disorder slightly enhances the critical temperature for condensation.Comment: To appear in Laser Physics, issue on the LPHYS'08 conference
(Trondheim, 2008
Dynamics of liquid 4He in Vycor
We have measured the dynamic structure factor of liquid 4He in Vycor using
neutron inelastic scattering. Well-defined phonon-roton (p-r) excitations are
observed in the superfluid phase for all wave vectors 0.3 < Q < 2.15. The p-r
energies and lifetimes at low temperature (T = 0.5 K) and their temperature
dependence are the same as in bulk liquid 4He. However, the weight of the
single p-r component does not scale with the superfluid fraction (SF) as it
does in the bulk. In particular, we observe a p-r excitation between T_c =
1.952 K, where SF = 0, and T_(lambda)=2.172 K of the bulk. This suggests, if
the p-r excitation intensity scales with the Bose condensate, that there is a
separation of the Bose-Einstein condensation temperature and the superfluid
transition temperature T_c of 4He in Vycor. We also observe a two-dimensional
layer mode near the roton wave vector. Its dispersion is consistent with
specific heat and SF measurements and with layer modes observed on graphite
surfaces.Comment: 3 pages, 4 figure
Committee Influence Over Controversial Policy: The Reproductive Policy Case
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74678/1/j.1541-0072.1999.tb01964.x.pd
Suppression of Superfluidity of He in a Nanoporous Glass by Preplating a Kr Layer
Helium in nanoporous media has attracted much interest as a model Bose system
with disorder and confinement. Here we have examined how a change in porous
structure by preplating a monolayer of krypton affects the superfluid
properties of He adsorbed or confined in a nanoporous Gelsil glass, which
has a three-dimensional interconnected network of nanopores of 5.8 nm in
diameter. Isotherms of adsorption and desorption of nitrogen show that
monolayer preplating of Kr decreases the effective pore diameter to 4.7 nm and
broadens the pore size distribution by about eight times from the sharp
distribution of the bare Gelsil sample. The superfluid properties were studied
by a torsional oscillator for adsorbed film states and pressurized liquid
states, both before and after the monolayer Kr preplating. In the film states,
both the superfluid transition temperature and the superfluid
density decrease about 10 percent by Kr preplating. The suppression of film
superfluidity is attributed to the quantum localization of He atoms by the
randomness in the substrate potential, which is caused by the
preplating--induced broadening of the pore size distribution. In the
pressurized liquid states, the superfluid density is found
to increase by 10 percent by Kr preplating, whereas is
decreased by 2 percent at all pressures. The unexpected enhancement of
might indicate the existence of an unknown disorder effect
for confined He.Comment: 27 pages, 8 figures, submitted to J. Phys. Soc. Jp
Initial microbial spectrum in severe secondary peritonitis and relevance for treatment
This study aims to determine whether abdominal microbial profiles in early severe secondary peritonitis are associated with ongoing infection or death. The study is performed within a randomized study comparing two surgical treatment strategies in patients with severe secondary peritonitis (nâ=â229). The microbial profiles of cultures retrieved from initial emergency laparotomy were tested with logistic regression analysis for association with âongoing infection needing relaparotomyâ and in-hospital death. No microbial profile or the presence of yeast or Pseudomonas spp. was related to the risk of ongoing infection needing relaparotomy. Resistance to empiric therapy for gram positive cocci and coliforms was moderately associated with ongoing abdominal infection (OR 3.43 95%CI 0.95â12.38 and OR 7.61, 95%CI 0.75â76.94). Presence of only gram positive cocci, predominantly Enterococcus spp, was borderline independently associated with in-hospital death (OR 3.69, 95%CI 0.99â13.80). In secondary peritonitis microbial profiles do not predict ongoing abdominal infection after initial emergency laparotomy. However, the moderate association of ongoing infection with resistance to the empiric therapy compels to more attention for resistance when selecting empiric antibiotic coverage
The EU as a negotiator in multilateral chemicals negotiations: multiple principals, different agents
- âŠ