313 research outputs found

    Thermodynamics of the superfluid dilute Bose gas with disorder

    Full text link
    We generalize the Beliaev-Popov diagrammatic technique for the problem of interacting dilute Bose gas with weak disorder. Averaging over disorder is implemented by the replica method. Low energy asymptotic form of the Green function confirms that the low energy excitations of the superfluid dirty Boson system are sound waves with velocity renormalized by the disorder and additional dissipation due to the impurity scattering. We find the thermodynamic potential and the superfluid density at any temperature below the superfluid transition temperature and derive the phase diagram in temperature vs. disorder plane.Comment: 4 page

    The Human Milk Oligosaccharides 3-FL, Lacto-N-Neotetraose, and LDFT Attenuate Tumor Necrosis Factor-alpha Induced Inflammation in Fetal Intestinal Epithelial Cells In Vitro through Shedding or Interacting with Tumor Necrosis Factor Receptor 1

    Get PDF
    Scope Human milk oligosaccharides (hMOs) can attenuate inflammation by modulating intestinal epithelial cells, but the mechanisms of action are not well-understood. Here, the effects of hMOs on tumor necrosis factor-alpha (TNF-alpha) induced inflammatory events in gut epithelial cells are studied. Methods and results The modulatory effects of 2'-fucosyllactose, 3-fucosyllactose (3-FL), 6'-sialyllactose, lacto-N-tetraose, lacto-N-neotetraose (LNnT), lactodifucotetraose (LDFT), and lacto-N-triaose (LNT2) on immature (FHs 74 Int) and adult (T84) intestinal epithelial cells with or without TNF-alpha are determined. Interleukin-8 (IL-8) secretion in FHs 74 Int and T84 are quantified to determine hMO induced attenuation of inflammatory events by ELISA. 3-FL, LNnT, and LDFT significantly attenuate TNF-alpha induced inflammation in FHs 74 Int, while LNT2 induces IL-8 secretion in T84. In addition, microscale thermophoresis assays and ELISA are used to study the possible mechanisms of interaction between effective hMOs and tumor necrosis factor receptor 1 (TNFR1). 3-FL, LNnT, and LDFT exert TNFR1 ectodomain shedding while LNnT also shows binding affinity to TNFR1 with a Kd of 900 +/- 660 nM. Conclusion The findings indicate that specific hMO types attenuate TNF-alpha induced inflammation in fetal gut epithelial cells through TNFR1 in a hMO structure-dependent fashion suggest possibilities to apply hMOs in management of TNF-alpha dependent diseases

    Effects of Different Human Milk Oligosaccharides on Growth of Bifidobacteria in Monoculture and Co-culture With Faecalibacterium prausnitzii

    Get PDF
    Human milk oligosaccharides (hMOs) are important bioactive components in mother’s milk contributing to infant health by supporting colonization and growth of gut microbes. In particular, Bifidobacterium genus is considered to be supported by hMOs. Approximately 200 different hMOs have been discovered and characterized, but only a few abundant hMOs can be produced in sufficient amounts to be applied in infant formula. These hMOs are usually supplied in infant formula as single molecule, and it is unknown which and how individual hMOs support growth of individual gut bacteria. To investigate how individual hMOs influence growth of several relevant intestinal bacteria species, we studied the effects of three hMOs (2′-fucosyllactose, 3-fucosyllactose, and 6′-sialyllactose) and an hMO acid hydrolysate (lacto-N-triose) on three Bifidobacteria and one Faecalibacterium and introduced a co-culture system of two bacterial strains to study possible cross-feeding in presence and absence of hMOs. We observed that in monoculture, Bifidobacterium longum subsp. infantis could grow well on all hMOs but in a structure-dependent way. Faecalibacterium prausnitzii reached a lower cell density on the hMOs in stationary phase compared to glucose, while B. longum subsp. longum and Bifidobacterium adolescentis were not able to grow on the tested hMOs. In a co-culture of B. longum subsp. infantis with F. prausnitzii, different effects were observed with the different hMOs; 6′-sialyllactose, rather than 2′-fucosyllactose, 3-fucosyllactose, and lacto-N-triose, was able to promote the growth of B. longum subsp. infantis. Our observations demonstrate that effects of hMOs on the tested gut microbiota are hMO-specific and provide new means to support growth of these specific beneficial microorganisms in the intestine.</p

    Dynamics of liquid 4He in Vycor

    Full text link
    We have measured the dynamic structure factor of liquid 4He in Vycor using neutron inelastic scattering. Well-defined phonon-roton (p-r) excitations are observed in the superfluid phase for all wave vectors 0.3 < Q < 2.15. The p-r energies and lifetimes at low temperature (T = 0.5 K) and their temperature dependence are the same as in bulk liquid 4He. However, the weight of the single p-r component does not scale with the superfluid fraction (SF) as it does in the bulk. In particular, we observe a p-r excitation between T_c = 1.952 K, where SF = 0, and T_(lambda)=2.172 K of the bulk. This suggests, if the p-r excitation intensity scales with the Bose condensate, that there is a separation of the Bose-Einstein condensation temperature and the superfluid transition temperature T_c of 4He in Vycor. We also observe a two-dimensional layer mode near the roton wave vector. Its dispersion is consistent with specific heat and SF measurements and with layer modes observed on graphite surfaces.Comment: 3 pages, 4 figure

    Towards Next-Generation Sequencing (NGS)-Based Newborn Screening:A Technical Study to Prepare for the Challenges Ahead

    Get PDF
    Newborn screening (NBS) aims to identify neonates with severe conditions for whom immediate treatment is required. Currently, a biochemistry-first approach is used to identify these disorders, which are predominantly inherited metalbolic disorders (IMD). Next-generation sequencing (NGS) is expected to have some advantages over the current approach, for example the ability to detect IMDs that meet all screening criteria but lack an identifiable biochemical footprint. We have now designed a technical study to explore the use of NGS techniques as a first-tier approach in NBS. Here, we describe the aim and set-up of the NGS-first for the NBS (NGSf4NBS) project, which will proceed in three steps. In Step 1, we will identify IMDs eligible for NGS-first testing, based on treatability. In Step 2, we will investigate the feasibility, limitations and comparability of different technical NGS approaches and analysis workflows for NBS, eventually aiming to develop a rapid NGS-based workflow. Finally, in Step 3, we will prepare for the incorporation of this workflow into the existing Dutch NBS program and propose a protocol for referral of a child after a positive NGS test result. The results of this study will be the basis for an additional analytical route within NBS that will be further studied for its applicability within the NBS program, e.g., regarding the ethical, legal, financial and social implications.</p

    Modeling focal epileptic activity in the Wilson-Cowan model with depolarization block

    Get PDF
    Measurements of neuronal signals during human seizure activity and evoked epileptic activity in experimental models suggest that, in these pathological states, the individual nerve cells experience an activity driven depolarization block, i.e. they saturate. We examined the effect of such a saturation in the Wilson–Cowan formalism by adapting the nonlinear activation function; we substituted the commonly applied sigmoid for a Gaussian function. We discuss experimental recordings during a seizure that support this substitution. Next we perform a bifurcation analysis on the Wilson–Cowan model with a Gaussian activation function. The main effect is an additional stable equilibrium with high excitatory and low inhibitory activity. Analysis of coupled local networks then shows that such high activity can stay localized or spread. Specifically, in a spatial continuum we show a wavefront with inhibition leading followed by excitatory activity. We relate our model simulations to observations of spreading activity during seizures

    Effect of random on-site energies on the critical temperature of a lattice Bose gas

    Full text link
    We study the effect of random on-site energies on the critical temperature of a non-interacting Bose gas on a lattice. In our derivation the on-site energies are distributed according a Gaussian probability distribution function having vanishing average and variance vo2v_o^2. By using the replicated action obtained by averaging on the disorder, we perform a perturbative expansion for the Green functions of the disordered system. We evaluate the shift of the chemical potential induced by the disorder and we compute, for vo2<<1v_o^2 << 1, the critical temperature for condensation. We find that, for large filling, disorder slightly enhances the critical temperature for condensation.Comment: To appear in Laser Physics, issue on the LPHYS'08 conference (Trondheim, 2008
    • …
    corecore