2,214 research outputs found

    ‘Op de knalmaat van de bylen':Geweld en verzet in de Surinaamse plantagepoëzie van P.F. Roos

    Get PDF
    How are colonial violence and resistance entangled in Dutch plantation poetry? This article aims to answer this question through an analysis of Paul François Roos’Surinaamsche mengelpoëzy (1804), a collection of poems describing Suriname’s plantation culture. Previously, its representations of Suriname’s natural environment have been interpreted as exotic variations on pastoral conventions, offering a Eurocentric perspective on the colony. This article hypothesises that, even if literary conventions in the poems contributed to the concealment of colonial violence against the natural environment and the Afro-American population, an affective analysis can also reveal voices of dissent. To do so, it will combine ecocritical and postcolonial theory to demonstrate how Surinaamsche mengelpoëzy ‘naturalised’ distinctions between ‘nature’ and ‘culture’, and between ‘harmony’ and ‘combat’, asserting colonial order. However, when this representation of Suriname’s plantation culture is conceptualised as an ‘affective economy’ in which human and non-human bodies are interrelated through economic and ecological affects, these distinctions start to blur, and order is destabilised. Using Monique Allewaert’s concept of ‘ecological personhood’ ecological affects become visible as Afro-American resistance against European notions of individuality and sovereignty.<br/

    The linear Fokker-Planck equation for the Ornstein-Uhlenbeck process as an (almost) nonlinear kinetic equation for an isolated N-particle system

    Full text link
    It is long known that the Fokker-Planck equation with prescribed constant coefficients of diffusion and linear friction describes the ensemble average of the stochastic evolutions in velocity space of a Brownian test particle immersed in a heat bath of fixed temperature. Apparently, it is not so well known that the same partial differential equation, but now with constant coefficients which are functionals of the solution itself rather than being prescribed, describes the kinetic evolution (in the infinite particle limit) of an isolated N-particle system with certain stochastic interactions. Here we discuss in detail this recently discovered interpretation.Comment: Minor revisions and corrections (including the title

    Damping by slow relaxing rare earth impurities in Ni80Fe20

    Full text link
    Doping NiFe by heavy rare earth atoms alters the magnetic relaxation properties of this material drastically. We show that this effect can be well explained by the slow relaxing impurity mechanism. This process is a consequence of the anisotropy of the on site exchange interaction between the 4f magnetic moments and the conduction band. As expected from this model the magnitude of the damping effect scales with the anisotropy of the exchange interaction and increases by an order of magnitude at low temperatures. In addition our measurements allow us to determine the relaxation time of the 4f electrons as a function of temperature

    Thermal conductivity of amorphous polymers and its dependence on molecular weight

    Get PDF
    Thermal conductivity is an important transport property governing the performance of polymers in non-isothermal conditions. Nevertheless, its dependence on molecular weight M has not been the subject of as much attention as other properties of polymeric materials. We determine the thermal conductivity of polystyrene and polyisobutylene for a wide range of molecular weight by measuring the density, heat capacity and thermal diffusivity. Using coarse-graining and reverse mapping methods, we were able to produce molecular melts to study the thermal conductivity of polystyrene using molecular dynamics simulations over a similar range of molecular weight. We find satisfactory agreement between the experimental and simulation results. However, all of our results show that thermal conductivity depends only slightly on molecular weight up the entanglement limit and it is independent thereafter. Our results put into question the few previous experimental studies on this topic by showing that the previously accepted proportionality to M\sqrt{M} does not hold. Our findings could have significant implications for the understanding of complex phenomena such as anisotropic thermal conductivity in polymers subjected to flow.Marie Skłodowska-Curie IF MTCIATTP 750985

    On the master equation approach to kinetic theory: linear and nonlinear Fokker--Planck equations

    Full text link
    We discuss the relationship between kinetic equations of the Fokker-Planck type (two linear and one non-linear) and the Kolmogorov (a.k.a. master) equations of certain N-body diffusion processes, in the context of Kac's "propagation of chaos" limit. The linear Fokker-Planck equations are well-known, but here they are derived as a limit N->infty of a simple linear diffusion equation on (3N-C)-dimensional N-velocity spheres of radius sqrt(N) (with C=1 or 4 depending on whether the system conserves energy only or energy and momentum). In this case, a spectral gap separating the zero eigenvalue from the positive spectrum of the Laplacian remains as N->infty,so that the exponential approach to equilibrium of the master evolution is passed on to the limiting Fokker-Planck evolution in R^3. The non-linear Fokker-Planck equation is known as Landau's equation in the plasma physics literature. Its N-particle master equation, originally introduced (in the 1950s) by Balescu and Prigogine (BP), is studied here on the (3N-4)-dimensional N-velocity sphere. It is shown that the BP master equation represents a superposition of diffusion processes on certain two-dimensional sub-manifolds of R^{3N} determined by the conservation laws for two-particle collisions. The initial value problem for the BP master equation is proved to be well-posed and its solutions are shown to decay exponentially fast to equilibrium. However, the first non-zero eigenvalue of the BP operator is shown to vanish in the limit N->infty. This indicates that the exponentially fast approach to equilibrium may not be passed from the finite-N master equation on to Landau's nonlinear kinetic equation.Comment: 20 pages; based on talk at the 18th ICTT Conference. Some typos and a few minor technical fixes. Modified title slightl

    High interindividual variability in dose-dependent reduction in speed of movement after exposing C. elegans to shock waves

    Get PDF
    In blast-related mild traumatic brain injury (br-mTBI) little is known about the connections between initial trauma and expression of individual clinical symptoms. Partly due to limitations of current in vitro and in vivo models of br-mTBI, reliable prediction of individual short-and long-term symptoms based on known blast input has not yet been possible. Here we demonstrate a dose-dependent effect of shock wave exposure on C. elegans using shock waves that share physical characteristics with those hypothesized to induce br-mTBI in humans. Increased exposure to shock waves resulted in decreased mean speed of movement while increasing the proportion of worms rendered paralyzed. Recovery of these two behavioral symptoms was observed during increasing post-traumatic waiting periods. Although effects were observed on a population-wide basis, large interindividual variability was present between organisms exposed to the same highly controlled conditions. Reduction of cavitation by exposing worms to shock waves in polyvinyl alcohol resulted in reduced effect, implicating primary blast effects as damaging components in shock wave induced trauma. Growing worms on NGM agar plates led to the same general results in initial shock wave effect in a standard medium, namely dose-dependence and high interindividual variability, as raising worms in liquid cultures. Taken together, these data indicate that reliable prediction of individual clinical symptoms based on known blast input as well as drawing conclusions on blast input from individual clinical symptoms is not feasible in br-mTBI

    Radial extracorporeal shock wave treatment harms developing chicken embryos

    Get PDF
    Radial extracorporeal shock wave treatment (rESWT) has became one of the best investigated treatment modalities for cellulite, including the abdomen as a treatment site. Notably, pregnancy is considered a contraindication for rESWT, and concerns have been raised about possible harm to the embryo when a woman treated with rESWT for cellulite is not aware of her pregnancy. Here we tested the hypothesis that rESWT may cause serious physical harm to embryos. To this end, chicken embryos were exposed in ovo to various doses of radial shock waves on either day 3 or day 4 of development, resembling the developmental stage of four- to six-week-old human embryos. We found a dose-dependent increase in the number of embryos that died after radial shock wave exposure on either day 3 or day 4 of development. Among the embryos that survived the shock wave exposure a few showed severe congenital defects such as missing eyes. Evidently, our data cannot directly be used to draw conclusions about potential harm to the embryo of a pregnant woman treated for cellulite with rESWT. However, to avoid any risks we strongly recommend applying radial shock waves in the treatment of cellulite only if a pregnancy is ruled out

    Radial extracorporeal shock wave treatment harms developing chicken embryos

    Get PDF
    Radial extracorporeal shock wave treatment (rESWT) has became one of the best investigated treatment modalities for cellulite, including the abdomen as a treatment site. Notably, pregnancy is considered a contraindication for rESWT, and concerns have been raised about possible harm to the embryo when a woman treated with rESWT for cellulite is not aware of her pregnancy. Here we tested the hypothesis that rESWT may cause serious physical harm to embryos. To this end, chicken embryos were exposed in ovo to various doses of radial shock waves on either day 3 or day 4 of development, resembling the developmental stage of four- to six-week-old human embryos. We found a dose-dependent increase in the number of embryos that died after radial shock wave exposure on either day 3 or day 4 of development. Among the embryos that survived the shock wave exposure a few showed severe congenital defects such as missing eyes. Evidently, our data cannot directly be used to draw conclusions about potential harm to the embryo of a pregnant woman treated for cellulite with rESWT. However, to avoid any risks we strongly recommend applying radial shock waves in the treatment of cellulite only if a pregnancy is ruled out

    Velocity field distributions due to ideal line vortices

    Get PDF
    We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid circular boundary. We focus on ``nearest neighbor'' contributions that result from vortices that fall (randomly) very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a non-Gaussian high-velocity ``tail'' on an otherwise Gaussian distribution function for the Eulerian velocity field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability distributions that are uniform inside the circle, but instead correspond to both higher and lower mean-field energies than those associated with the uniform vorticity distribution. We find substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E (http://pre.aps.org/) in May 200

    Mean Field Theory of Spherical Gravitating Systems

    Full text link
    Important gaps remain in our understanding of the thermodynamics and statistical physics of self-gravitating systems. Using mean field theory, here we investigate the equilibrium properties of several spherically symmetric model systems confined in a finite domain consisting of either point masses, or rotating mass shells of different dimension. We establish a direct connection between the spherically symmetric equilibrium states of a self-gravitating point mass system and a shell model of dimension 3. We construct the equilibrium density functions by maximizing the entropy subject to the usual constraints of normalization and energy, but we also take into account the constraint on the sum of the squares of the individual angular momenta, which is also an integral of motion for these symmetric systems. Two new statistical ensembles are introduced which incorporate the additional constraint. They are used to investigate the possible occurrence of a phase transition as the defining parameters for each ensemble are altered
    • …
    corecore