54 research outputs found

    Variant -and individual dependent nature of persistent Anaplasma phagocytophilum infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anaplasma phagocytophilum </it>is the causative agent of tick-borne fever in ruminants and human granulocytotropic anaplasmosis (HGA). The bacterium is able to survive for several months in immune-competent sheep by modifying important cellular and humoral defence mechanisms. Little is known about how different strains of <it>A. phagocytophilum </it>propagate in their natural hosts during persistent infection.</p> <p>Methods</p> <p>Two groups of five lambs were infected with each of two <it>16S </it>rRNA gene variants of <it>A. phagocytophilum</it>, i.e. <it>16S </it>variant 1 which is identical to GenBank no <ext-link ext-link-id="M73220" ext-link-type="gen">M73220</ext-link> and <it>16S </it>variant 2 which is identical to GenBank no <ext-link ext-link-id="AF336220" ext-link-type="gen">AF336220</ext-link>, respectively. The lambs were infected intravenously and followed by blood sampling for six months. <it>A. phagocytophilum </it>infection in the peripheral blood was detected by absolute quantitative real-time PCR.</p> <p>Results</p> <p>Both <it>16S </it>rRNA gene variants of <it>A. phagocytophilum </it>established persistent infection for at least six months and showed cyclic bacteraemias, but variant 1 introduced more frequent periods of bacteraemia and higher number of organisms than <it>16S </it>rRNA gene variant 2 in the peripheral blood.</p> <p>Conclusion</p> <p>Organisms were available from blood more or less constantly during the persistent infection and there were individual differences in cyclic activity of <it>A. phagocytophilum </it>in the infected animals. Two <it>16S </it>rRNA gene variants of <it>A. phagocytophilum </it>show differences in cyclic activity during persistent infection in lambs.</p

    Dental metric standards for sex estimation in archaeological populations from Iran

    Get PDF
    Sex estimation of skeletal remains is one of the major components of forensic identification of unknown individuals. Teeth are a potential source of information on sex and are often recovered in archaeological or forensic contexts due to their post-mortem longevity. Currently there is limited data on dental sexual dimorphism of archaeological populations from Iran. This dissertation represents the first study to provide a dental sex estimation method for Iron Age populations. The current study was conducted on the skeletal remains of 143 adults from two Iron Age populations in close temporal and geographic proximity in the Solduz Valley (West Azerbaijan Province of Iran). 2D and 3D cervical mesiodistal and buccolingual and root volume measurements of maxillary and mandibular teeth were used to investigate the degree of sexual dimorphism in permanent dentition and to assess their applicability in sex estimation. In total 1327, 457, and 480 anterior and posterior teeth were used to collect 2D cervical, 3D cervical, and root volume measurements respectively. 2D cervical measurements were taken using Hillson-Fitzgerald dental calliper and 3D measurements were collected using CT images provided by Open Research Scan Archive (ORSA) - Penn Museum. 3D models of the teeth were created using manual segmentation in the Amira 6.01 software package. Since tooth density largely differs from crown to apex, root segmentation required two threshold levels: the segmentation of the root from the jaw and the segmentation of the crown from the root. Thresholds used for root segmentation were calculated using the half maximum height protocol of Spoor et al. (1993) for each skull, and thresholds used for crown segmentation were set visually for each tooth separately. Data was analysed using discriminant function analysis and posterior probabilities were calculated for all produced formulae where sex was previously assessed from morphological features of pelvis and skull. Bootstrapping was used to account for small sample sizes in the analysis. Statistical analysis was carried out using SPSS 23. The percentage of sexual dimorphism was also used to quantify the amount of sexual dimorphism in the sample. The results showed that incisors and canines were the most sexually dimorphic teeth, providing percentages of correct sex classification between 80% and 100% depending on the measurement used. Root volume measurement was shown to be the most sexually dimorphic variable providing an accuracy of over 90% in all functions. The present study provided the first dental metric standards for sex estimation using odontometric data in Iranian archaeological populations. Dental measurements, particularly root volume measurements, were found to be of value for sex assessment and the method presented here could be a useful tool for establishing accurate demographic data from skeletal remains of the Iron Age from Iran
    corecore