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Abstract 

 

Sex estimation of skeletal remains is one of the major components of forensic 

identification of unknown individuals. Teeth are a potential source of information on 

sex and are often recovered in archaeological or forensic contexts due to their post-

mortem longevity. Currently there is limited data on dental sexual dimorphism of 

archaeological populations from Iran. This dissertation represents the first study to 

provide a dental sex estimation method for Iron Age populations. 

 

The current study was conducted on the skeletal remains of 143 adults from two Iron 

Age populations in close temporal and geographic proximity in the Solduz Valley 

(West Azerbaijan Province of Iran). 2D and 3D cervical mesiodistal and buccolingual 

and root volume measurements of maxillary and mandibular teeth were used to 

investigate the degree of sexual dimorphism in permanent dentition and to assess their 

applicability in sex estimation. In total 1327, 457, and 480 anterior and posterior teeth 

were used to collect 2D cervical, 3D cervical, and root volume measurements 

respectively. 2D cervical measurements were taken using Hillson-Fitzgerald dental 

calliper and 3D measurements were collected using CT images provided by Open 

Research Scan Archive (ORSA) - Penn Museum. 3D models of the teeth were created 

using manual segmentation in the Amira 6.01 software package. Since tooth density 

largely differs from crown to apex, root segmentation required two threshold levels: 

the segmentation of the root from the jaw and the segmentation of the crown from the 

root. Thresholds used for root segmentation were calculated using the half maximum 

height protocol of Spoor et al. (1993) for each skull, and thresholds used for crown 

segmentation were set visually for each tooth separately. Data was analysed using 

discriminant function analysis and posterior probabilities were calculated for all 

produced formulae where sex was previously assessed from morphological features of 

pelvis and skull. Bootstrapping was used to account for small sample sizes in the 

analysis. Statistical analysis was carried out using SPSS 23. The percentage of sexual 

dimorphism was also used to quantify the amount of sexual dimorphism in the sample.  

 

The results showed that incisors and canines were the most sexually dimorphic teeth, 

providing percentages of correct sex classification between 80% and 100% depending 

on the measurement used. Root volume measurement was shown to be the most 

sexually dimorphic variable providing an accuracy of over 90% in all functions.  

 

The present study provided the first dental metric standards for sex estimation using 

odontometric data in Iranian archaeological populations. Dental measurements, 

particularly root volume measurements, were found to be of value for sex assessment 

and the method presented here could be a useful tool for establishing accurate 

demographic data from skeletal remains of the Iron Age from Iran.  

https://en.wikipedia.org/w/index.php?title=Solduz_Valley&action=edit&redlink=1
https://en.wikipedia.org/wiki/West_Azerbaijan_Province
https://en.wikipedia.org/wiki/Iran
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CHAPTER 1 INTRODUCTION 

 

“Show me your teeth and I will tell you who you are” 

Baron George Cuvier (Hillson, 2002, p.1). 

 

In the field of human osteology, sex estimation is an important step in developing the 

biological profile of individuals and populations. Sex estimation is an integral and 

foremost step for developing a reliable biological profile during examination of 

skeletal remains. Accurate estimation of sex is vital in estimation of age at death, 

ancestry and stature as there are observable differences in ageing and growth patterns 

between sexes, and variations in morphological traits related to ancestry (White and 

Folkens, 2005). Also, in forensic cases, correctly sexing an unknown individual can 

reduce the number of possible matches to missing persons by fifty percent (Moore, 

2013). Moreover, bioarchaeologists analyse sex profiles of populations to see how 

demographic profiles have changed over the centuries to try and understand patterns 

of mortality or to assess how funerary customs and social attitudes to death have 

changed through time. Also, the sex-related health status differences as revealed by 

human skeletal remains and more particularly, palaeopathology help the 

bioarchaeologist identify the health differences between the sexes by examining the 

influence of sex (biologically-determined) and gender (socially-determined) on the 

prevalence, distribution and pattern of disease in skeletal populations (Storey, 1998). 

 

There are a number of methods that can be used to estimate the sex of human remains, 

varying from visual assessment to metric analysis of sexually dimorphic traits. It has 

long been established that the pelvis is the most reliable area for sex estimation, 

because of variation in the size of the female pelvis due to reproductive requirements 

(Pickering and Bachman, 1997; Byers, 2002; Bass, 2005). After the pelvis, the skull 

was for a long time considered the next most reliable sex-related skeletal indicator. 

Yet the results of previous studies (e.g. France, 1998; Spradley and Jantz, 2011) show 

that most elements of the postcranial skeleton perform better than the skull when 

assessing sex if metric methods are used. In a majority of archaeological excavations, 
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however, not all the bones of a skeleton are recovered, due to the influence of 

environmental and taphonomic conditions. A more durable and stable element in the 

human body would therefore be preferable for the development of a widely applicable 

and reliable sex estimation method. Tooth enamel is the hardest and the most highly 

mineralized substance in the human body (Nanci, 2007; Bush et al., 2006), and is 

extremely resistant to post-mortem damage and disintegration. This resilience makes 

teeth very important in the identification of skeletal remains, particularity when 

standard identification methods cannot be applied due to poor preservation (Anderson 

et al., 1995; Hutt et al., 1995; Scott and Turner, 2000; Schmidt, 2008; Fereira et al., 

2008). Applications of discriminant function analysis in several studies have resulted 

in 77-100% accuracy in odontometric sex estimation (Ditch and Rose, 1972; De Vito 

and Saunders, 1990; Acharya and Mainali, 2007; Hassett, 2011; Zorba et al., 2012; 

2014; Viciano et al., 2015; Tardivo et al., 2011; 2015), further increasing the role of 

dentition in this field. 

 

Sex assessment from dental tissue is mainly based on a comparison of either the 

differences in tooth size between males and females, or the frequencies in their non-

metric dental traits (Vodanovic et al., 2007); for example, Carabelli’s trait in upper 

molars, shovelling of the upper central incisors, or the distal accessory ridge of the 

upper and lower canines (Teschler-Nicola and Prossinger, 1998). Sex estimation using 

tooth measurements also relies on the general trend of males having larger teeth than 

females. The most commonly reported tooth measurements for sex estimation are the 

maximum mesiodistal and buccolingual crown measurements (Black, 1978; Hattab et 

al., 1996; Kondo and Townsend, 2004; Acharya and Mainali, 2007; Pereira et al., 

2010; Gonçalves et al., 2015; Sharma et al., 2013). These measurements, however, are 

difficult to obtain in crowns that are embedded in the jaw or that are highly affected 

by dental wear, which is the most frequent condition in archaeological samples. In 

addition, common dental pathologies such as occlusal caries and the expression of non-

metric dental traits can also considerably impact the efficacy of crown measurements. 

To solve these problems, alternative measurements of cervical tooth diameters were 

proposed by Hillson et al. (2005). These measurements are taken at the cervical margin 

of the crown along the cemento-enamel junction. Hillson et al. (2005) and 
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Stojanowsky (2007) proposed that cervical measurements provide similar results to 

traditional crown measurements and are much less affected by dental wear. These 

measurements are particularly useful in studies of prehistoric skeletal remains as they 

allow for the inclusion of teeth with alterations on the crown due to wear, pathology 

(e.g. caries), cultural modification or post-mortem damage. This allows a larger dataset 

to be obtained, with a broader range of ages represented. Different studies have used 

cervical measurements for sex estimation and have confirmed their efficacy in this 

respect (Vodanovic et al., 2007; Hassett, 2011; Viciano et al., 2011; 2013; 2015, 

Tuttösí and Cardoso, 2015; Peckmann et al., 2015).  

 

A large number of studies have demonstrated that the degree of sexual dimorphism in 

teeth varies between populations (Bishara et al., 1986; Ates et al., 2006; Acharya and 

Mainali, 2007; Prabhu and Acharya, 2009; Khamis et al., 2014; Peckmann et al., 

2015), as a result of genetic and environmental factors (Kieser, 1990; Hughes and 

Townsend, 2013). To be able to use dental measurements for identification, it is 

therefore necessary to first determine specific population values. The data can then be 

used to assess sex in particular cases, both in individuals and in groups, such as in 

archaeological sites or in the case of mass disasters (Ghose and Baghdady, 1979; 

Balciuniene and Jankauskas, 1993; İşcan and Kedici, 2003). Sexual differences in 

dental measurements have been well studied in many different archaeological 

populations (Owsley, 1982; Stojanowsky, 2007; Vodanovic et al., 2007; Hassett, 2011; 

Viciano et al., 2011; 2015; Tuttösí and Cardoso, 2015); however, currently, there are 

no reference studies for sex estimation using odontometric data in Iranian 

archaeological populations, which form the focus of the current study. Due to this lack 

of research, establishing population structure using Iranian collections is very difficult. 

But it is clear that the data obtained from other populations may not be accurate. This 

study took advantage of two unique skeletal collections, from the Hasanlu and Dinkha 

Tepe sites, to develop the very first dental metric standards for sex estimation in 

Iranian archaeological populations. The Hasanlu collection alone contains a total of 

263 individuals, which makes it one of the larger skeletal collections not just from Iran 

but from the Near East as a whole. Moreover, the Hasanlu and Dinkha Tepe 

osteological collections represent two of only a few well-preserved skeletal collections 
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from Iran. These sites were excavated over ten seasons from 1957 to 1977 by a joint 

team from Iran and the United States, directed by Robert Dyson. The early samples of 

these skeletons were initially shipped to the University of Kansas and were then 

divided between the University of Tennessee and the University of South Carolina. 

The later skeletons (1965–1977) were housed in the University of Pennsylvania 

Museum of Archaeology and Anthropology. The collection was completed when in 

the late 1980s, the other skeletons from the site were also sent there. 

 

The Hasanlu skeletal collection is important for two main reasons: first, the scarcity of 

the remains from this particular region and, second, the exceptional archaeological 

context within which it is located: the Hasanlu site consists of a cemetery group (c. 

l450–c. 800 BCE) and a collection of individuals that belong to a sacked city. The 

present study is mainly focused on the contemporaneous Iron Age sub-samples that 

were obtained from the cemetery located in the Low Mound (c. l450–c. 800 BCE) and 

the destruction level belonging to the High Mound (c. 800 BCE). The majority of the 

skeletons (210 individuals) were obtained from the latter, which is referred to as the 

Pompeii of the Iron Age Near East, due to its being able to provide an exceptional 

collection of data regarding a large settlement in this period.   

 

1.1. Research Objectives 

 

In the presents study, the sex of the skeletons was estimated using 1) morphological 

features of the pelvis and skull, and 2) dental measurements. A comparison was then 

made between the results obtained from osteological methods and those obtained from 

dental methods. To collect the odontometric data, the present study initially used the 

cervical mesiodistal (MD) and buccolingual (BL) measurements proposed by Hillson 

et al. (2005) for sex estimation, utilising the Hillson-Fitzgerald dental calliper. Dental 

samples from Hasanlu and Dinkha Tepe, similar to other archaeological samples, 

presented medium to severe dental wear, which prevented the author from using crown 

measurements. In the course of the cervical measurement collection it became clear to 

the author that Hillson et al.’s (2005) method presents a set of limitations which 

reduces its applicability and efficacy for odontometric sex estimation, particularly in 
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the case of archaeological samples (see Chapter 8). The decision was therefore made 

to see whether it would be possible to tackle these limitations and introduce a more 

suitable and efficient method instead. The researcher used Computed Tomography 

(CT) scan images to collect cervical measurements on 3D models of each tooth 

separately. 3D images offer researchers a non-destructive, non-invasive method of 

studying skeletal and dental remains, which is very advantageous, especially when 

dealing with fragile material. This technology also enabled the researcher to introduce 

a complimentary parameter for sex estimation using those parts of the teeth, such as 

tooth root volume, which it is not possible to measure accurately using traditional 2D 

measurement methods.   

 

The objectives of the presents study are therefore as follows: 

 

1) To develop the first dental metric standards for sex estimation in archaeological 

populations from Iran via a case study of the Hasanlu and Dinkha Tepe skeletal 

collections. 

 

2) To assess the applicability of 2D cervical measurements in sex estimation for 

the Hasanlu and Dinkha Tepe collections.  

 

3) To examine the application of Hillson et al.’s (2005) method to archaeological 

samples. 

 

4) To explore in what ways the 2D cervical measurement method can be 

modified, and how reliable these modifications are for sex estimation in the 

Hasanlu and Dinkha Tepe collections. 

 

5) To assess whether tooth root volume be used as a new parameter for sex 

estimation, and how reliable this method is. 

 

 

 



6 
 

1.2. Organization of the Dissertation  

 

The dissertation is divided into nine chapters, each of which contributes to the 

objectives presented here. Chapters 2, 3 and 4 discuss the most common methods of 

sex estimation in adults. Chapter 2 provides an overview of morphological and metric 

sex estimation methods using different bones, with a focus on methods involving the 

pelvis and skull, as they are used in this analysis. Summary tables are provided 

outlining some of the publications regarding different sex estimation methods using 

different bones.  

 

Chapter 3 discusses odontometric sexual dimorphism and the factors related to size 

differences between male and female dentition. This chapter also reviews the common 

odontometric methods for sex estimation and the limitations that each method presents, 

and summarises key publications related to dental measurement sex estimation 

methods.   

 

Chapter 4 includes a brief discussion of virtual anthropology and image analysis 

techniques in sex estimation studies. This chapter also outlines the advantages of 3D 

analysis methods compared to traditional 2D analysis methods. A summary table of 

previous publications is provided in this chapter in order to offer a better understanding 

of the various methods’ efficacy in sex estimation.   

 

Chapter 5 gives a description of the Hasanlu and Dinkha Tepe sites and excavations, 

and also outlines previous research on the collections. This chapter also describes the 

skeletal collections, explaining the number of individuals and the period they are 

associated with. It also provides a complete description of the 2D cervical, 3D cervical 

and root volume (RV) measurement methods used in data collection and statistical 

analysis.   

 

Chapter 6 outlines the age and sex distribution of the samples, the total number of teeth 

used in each method, and provides the results of the statistical analysis. 
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Chapter 7 explains the limitation of the present study and the methods used to tackle 

these limitations.  

 

Chapter 8 provides a discussion of the results of the research. This chapter offers a 

summary of the results and compares the results of each method to the literature, as 

well as to other methods used in the research, in order to determine which method is 

the more suitable for sex estimation in archaeological samples. The various objectives 

of the study are also presented and discussed.   

 

The author concludes this dissertation with Chapter 9, which includes a summation of 

the data presented in previous chapters and discusses future research directions.  

 

 

1.3. Contribution of the Present Study 

 

Iran is a country with a rich history and many archaeological sites. Every year several 

archaeological excavations are held in different regions and human remains are often 

one of the main findings. Unfortunately, since biological anthropology is not being 

taught extensively at Iranian universities, there are few specialists able to analyse the 

skeletal remains uncovered. However, this lack of expertise and scientific knowledge 

in the field has greatly affected the study and publication of skeletal materials from 

Iran. Thus, there is not a lot of data available, and even fewer studies using the most 

recent methods of skeletal and dental biology. Most of the remains are left in museums 

and are being neglected without being analysed and studied by experts. This is tragic, 

as these remains can provide valuable sets of information that could shed light on dark 

aspects of the past populations living in Iran. This calls for urgent research and 

scientific analysis of Iranian archaeological human remains so that this wealth of 

information is not wasted, and so that past Iranian populations can be studied and 

analysed in more accurate detail.  

 

There have been only a few studies conducted in recent years on human remains from 

Iran. In these studies, laboratory-based methods such as isotope and DNA analysis 
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have been used to analyse the origin of agriculture, paleodiet, and immigration in the 

Neolithic and Palaeolithic periods (Trinkaus et al., 2008; Broushaki et al., 2016; 

Gallego-Liorente et al., 2016). However, these studies do not deal with basic aspects 

of bioarchaeology, such as sex estimation methods, which is the first step in creating 

a biological profile of human remains from Iran. This becomes even more important 

in terms of dental and skeletal metric sex estimation methods which are population-

specific; the standards from one population cannot be used on other populations. The 

present study provides the first dental metric standards for sex estimation in Iranian 

archaeological populations. The focus of this study is on skeletal remains from the 

Hasanlu and Dinkha Tepe collections, which are among the most important collections 

in Near Eastern archaeology, and especially in Iran. This collection is the only 

relatively large well-preserved skeletal collection from Iran, and is the only collection 

of which the physical and virtual data were available. This made this collection the 

best collection for analysis due to the purposes of this study, which is focused on 

introducing a new parameter for sex estimation, volume of the tooth root, which cannot 

be studied using traditional 2D methods.  

 

The dental metric standards for sex estimation for Iranian archaeological populations 

provided in this study are important in regards to their application to unknown skeletal 

remains from Iran around the same period (the Iron Age), and are also a good starting 

point for developing further standards for different regions and different periods. In 

addition, using tooth root volume for sex estimation could be very helpful in estimating 

sex in poorly-preserved and fragmented archaeological skeletal collections. 

 

The excavations conducted in Hasanlu provided the researchers with a large amount 

of archaeological material and associated data. In spite of much of the collection 

having already been scientifically tested and studied, there is still a wide range of 

research topics left to be conducted on it. The current study’s analysis of the skeletal 

remains of Hasanlu provides a better understanding of the inhabitants of this site in 

terms of the level of sexual dimorphism. It will be a valuable source for those studying, 

for example, the biological relationships within or between Hasanlu and Dinkha Tepe, 

or performing further research on sex estimation techniques, for instance using non-
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metric dental variations. The data presented here can also be used as a comparative 

base for the analysis of other skeletal remains that have been obtained from the area, 

such as those of Khoda-Bandeh.  

 

The present study also develops the application of 3D technologies to the achievement 

of anthropological goals. The methods proposed here are very useful for sex 

estimation, particularly in more fragile samples, such as archaeological remains, due 

to the non-invasive nature of the image analysis methods. In addition, the RV 

measurement method can be used in teeth with a higher degree of wear or other 

pathological conditions, which limit the efficacy of other dental measurements; this 

makes the RV method an extremely valuable technique in poorly-preserved 

archaeological samples.      

 

The present study provides a set of interesting data and information regarding the 

Hasanlu and Dinkha Tepe skeletal collections. It should be noted here, however, that 

due to these collections being a valuable source of biological information, it is also 

possible to analyse and study them in the light of many other research topics. Even 

during the process of data collection in this study, several projects presented 

themselves that could be conducted in the future. Examples would be carrying on 

developing further new and advanced techniques to determine the sex of 

archaeological skeletal material, studying the metric dental variations between the 

Hasanlu and Dinkha Tepe populations, and understanding the biological relationships 

within and between the Hasanlu and Dinkha Tepe collections. In addition, both 3D 

cervical and RV measurement methods could be examined further on larger 

modern/archaeological collections from different periods and regions, to check the 

applicability of these methods in sex estimation in other populations. In addition, the 

methods suggested in this study can also be used for sex estimation in immature 

individuals, considering the fact that the crowns of permanent teeth develop early and, 

once formed, remain unchanged during growth and development. Sex estimation of 

immature individuals is useful for specific additional analysis in this particular 

collection because it is thus possible to determine the demographic patterns of the 

population (survival and mortality), nutritional stress, diseases, growth and 
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development, and distribution of pathological conditions (caries, fractures, infectious 

diseases, etc.). These important aspects of the lives of children in the past have 

remained hidden because, as a rule, anthropological work on archaeological 

populations has been focused on the adult sample, leaving aside the subadults, thereby 

producing a bias in the paleodemographic profile of the population. The sex estimation 

of subadults in the Hasanlu and Dinkha Tepe collections is beyond the scope of the 

current study, but the methods presented here provide a good starting point for further 

analysis in this field.   

 

Before and during this study, the researcher confronted a series of limitations regarding 

the knowledge that could be gained from this research. These limitations are related to 

accessing the collection, collecting data from archaeological samples that generally 

are more incomplete in comparison with modern samples, and determining how far 

the skeletons under study represent the overall population. A detailed discussion of 

these limitations and how they have been tackled or have affected the results is 

presented in chapters seven and eight. 

It is hoped that the current study will provide a strong foundation on which future 

skeletal and archaeological studies related to Hasanlu and related sites can be based. 

Further research discussion will be discussed in chapter 9.  
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CHAPTER 2        SEX ESTIMATION BASED ON BONES 

 

2.1. Introduction 

 

Physical and forensic anthropologists mostly prefer to use the term ‘sex’ instead of 

‘gender’. Sex is defined as the biological and physiological traits by which men and 

women are defined, while gender is related to the roles, activities, and behaviours that 

are socially constructed and therefore regarded by society as appropriate for men and 

women.  

 

It is due to sexual dimorphism that male and female skeletons can be differentiated. 

Sexual dimorphism “generally refers to size and shape differences between males and 

females of a given species” (Langley et al., 2013, p.140). The differences between men 

and women in all known human populations are in their primary and secondary sex 

traits; the former referring to those characteristics that are directly linked with 

reproduction (male and female genitals), and the latter referring to all the other traits 

that are not directly linked to reproduction, such as women’s breasts, the larger average 

size of men compared to women, and their greater amount of body hair, strength, and 

subcutaneous fat (Kornblum, 2011). Sexual dimorphism is usually used for secondary 

sex traits. The soft tissue differences that are easily detected as the differentiations 

between male and female bodies are not the only representations of sexual 

dimorphism; these differences are also exhibited in the hard tissue of the skeletons. 

Compared to men, the size of the female skeleton is generally smaller and the 

morphology is more gracile. Therefore, when dealing with a large collection of bones 

of mixed sex, those elements that are large and most robust are generally considered 

male, whereas the smallest and most gracile elements are regarded as female. One of 

the reasons for the differentiation between male and female skeletons is the hormonal 

differences between the two sexes. From the moment that conception takes place, the 

sex of the individual is determined in the chromosomes: a female has two X 

chromosomes and a male an X and a Y. Depending on the chromosomal sex, ovaries 

or testes are developed in the foetus. It is the hormones secreted by the testes that cause 

the development of the features of the body that characterize males. As the time of 
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puberty approaches, there is an increase in the production of sexual hormones, which 

eventually causes the sexually dimorphic skeletal traits that appear at adulthood to 

develop. For this reason, it is easier to assess the sex of skeletons of adults and much 

more difficult for subadults. In addition, there is inconsistency in sexual dimorphism 

across all human populations, with some groups exhibiting higher levels of sexual 

dimorphism. This factor makes these methods population-specific. Sexual dimorphism 

can be affected by diet, lifestyle-related factors (such as activity levels) and random 

individual patterns of maturation (Taylor and Kieser, 2016).  

 

Using sexually dimorphic skeletal traits, multiple methods have been developed for 

sex estimation, generally divided into two categories: morphologic analysis and metric 

analysis. Each of these methods uses certain bones or overall patterns based on the 

level and the quality of sexual dimorphism in the bone or anatomic region under study. 

As discussed previously, compared to morphologic methods, metric methods are 

regarded as more objective. When it comes to sex assessment, however, the most 

reliable method is a visual assessment of the pelvis. Next in line are methods in which 

the dimensions of various long bones of postcranial skeletons are used to assess sex, 

followed by those using the skull measurements (Spradley and Jantz, 2011).  

 

2.2 . Morphological Sex Assessment 

 

2.2.1. Pelvis 

 

The classification of methods of sex assessment is made according to the types of data 

used for sexing. Morphological methods of sex estimation primarily rely on a visual 

examination of the size and shape of skeletal materials. The pelvis (os coxae, sacrum, 

and coccyx) is recognized as the most reliable region to estimate the sex of an adult 

skeleton (Meindl et al., 1985; MacLaughlin and Bruce, 1990; Bruzek, 2002; Ari, 2005; 

Gonzalez et al., 2009; Decker et al., 2011; Zech et al., 2012; Franklin et al., 2014; 

Hayashizaki et al., 2015) because the form of these bones exhibit specific functional 

adaptation in the morphology of male and female reproductive capacity (Chamberlain, 

2006). The male pelvic structure has evolved to accommodate bipedal locomotion. In 
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females, however, pelvic morphology reflects modifications ensuring that 

childbearing is also possible (Tague, 1995). In overall shape, the female pelvis is more 

oval and flattened, while the male pelvis is taller and narrower. Additionally, in the 

female, the inlet is wider and more circular, whereas in the male, it is narrower and 

more heart-shaped. Females also exhibit greater pelvic diameter and a larger outlet 

(Pace et al., 1965; Crouch, 1982; Cox and Mays, 2002; İşcan and Steyn, 2013) (Fig. 

2.1). Aspects of these morphological differences in the pelvis provide osteological sex 

indicators.  

 

 

 

Fig 2.1. Differences between the male and female pelvis. Source: 

<https://cdn.vortala.com/childsites/uploads/1112/files/Pelvic-differences 1024x354.jpg.>. 
 

 

In 1969 Terrell Phenice designed an important method for sexing the pelvis. His paper 

“A Newly Developed Visual Method of Sexing the Os Pubis” describes the most 

accurate method that has ever been proposed for the assessment of sex from human 

skeletal remains (White and Folkens, 2005). Phenice’s method uses three traits: the 

ventral arch, subpubic concavity, and the medial aspect of the ischiopubic ramus. He 

observes that female individuals generally show the development of (1) a ridge on the 

anterior surface of the pubis known as the ventral arc, (2) the subpubic concavity, a 

depression located just below the symphysis in the ramus, and (3) medial aspect of the 

ischiopubic ramus, all of which are not typically displayed by males. The presence of 

these characteristics, therefore, indicates a female, while their absence indicates a 

male. Phenice (1969) applied this method to the pubic bones of 175 individuals of 

white and black origin (72 of black origin and 103 of white origin) and obtained sex 
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classification accuracy of over 95%. The results showed that the most sexually 

dimorphic feature was the ventral arc, while the ischiopubic ramus was the most likely 

to be ambiguous (Table 2.1).   

 

Several studies have been conducted to further validate the utility of Phenice’s traits. 

Some of these validation studies have reported an accuracy rate of over 90%, while 

some have reported less accurate results (59-83%) (Table 2.1). Ubelaker and Volk 

(2002) conducted a study on 198 individuals of known sex from the Terry collection 

to test the Phenice method and achieved a correct sex classification of 88.4%. 

However, this accuracy increased substantially (from 88.4% to 96.5%) when (1) 

Phenice’s criteria were used in combination with other non-metric pelvic variables, 

and (2) when the method was attempted by a trained observer. The authors concluded 

that the Phenice method could be extremely useful for experienced observers. 

Otherwise, in the case of inexperienced examiners, an advantage is gained by using 

additional pelvic morphological indicators. Klales et al. (2012) conducted a study to 

statistically assess the validity of the Phenice method. They expanded on his method 

by scoring each of the traits on a five-point ordinal scale showing the possible range 

of variation in the expression of the trait. They scored 310 left innominates from the 

Hamann-Todd Osteological Collection and the W.M. Bass Donated Skeletal 

Collection and obtained sex accuracy of 85-94%. Garcia de Leon and Toon (2014) 

compared the performance of Klales et al. (2012) and Phenice’s (1969) methods for 

sex assessment in a modern Colombian sample of 39 males and 11 females. They 

showed that the percentage of correct classification of sex was significantly higher 

(82%) when using the Phenice method than when using Klales et al.’s (2012) method 

(66%). This, however, may have been the result of the small sample size (Table 2.1).  

 

In 1984 İşcan and Derrick proposed a method that used a variety of pelvic features. 

They studied a sample of 17 males and 10 females, representing modern American and 

Asiatic populations. Their analysis was based on an examination of the efficacy of the 

iliac tuberosity, the postauricular sulcus, and the postauricular space of the ilium as 

sex determining parameters. According to this study the best indicator of sex in an 

adult skeleton was the postauricular space (more prominent in females) followed by 
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the postauricular sulcus (commonly more present in women). Using this method the 

authors obtained a sex accuracy level of 90%.  

 

In 2002 another method was proposed by Bruzek, combining Phenice (1969) and İşcan 

and Derrick’s (1984) methods. In this study, five morphological pelvic traits 

(preauricular surface, greater sciatic notch, the composite arch, inferior pelvis, and 

ischiopubic index) were examined in 402 adult individuals of French (98 males and 64 

females) and Portuguese (106 males and 134 females) origin. Using all five variables, 

Bruzek’s method (2002) provided a correct estimate in 95% of cases. Bruzek (2002) 

also concluded that this method provided a lower level of observer subjectivity 

compared to the Phenice method. The accuracy of Bruzek’s method was tested by Listi 

and Bassett (2006) on a sample of 876 modern Americans from three different 

collections (the W.M. Bass Donated Collection, the Robert Terry Anatomical 

Collection, and the Donated Collection House at Louisiana State University). 

Although the accuracy rate of their study (89%) was lower than that originally reported 

by Bruzek (2002), they confirmed both the efficacy of the method by both obtaining 

success rates similar to traditional methods and confirming lower inter-observer error.  

As the above-mentioned studies have shown (Table 2.1), the pelvis is one of the most 

reliable morphological methods of sex estimation in human skeletal remains, due to 

its high level of sexual dimorphism and high accuracy rate, approaching 100%. This 

accuracy rate is considerably increased when the entire hip bone is use 

 

 Table 2.1. The list of studies using morphological features of the pelvis for sex estimation. 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 

Best 

variables 

Phenice 

(1969) 

Modern/ 

America 

N=275 

(M:180, 

F:95) 

ventral arch, 

subpubic concavity, 

medial aspect of the 

ischiopubic ramus 

95% 
Ventral 

arch 

Kelley 

(1978) 

Native 

Americans 

N=362 

(M:191, 

F:171) 

Phenice’s method 90-100% 
Ventral 

arch 

İşcan & 

Derrick 

(1984) 

Modern/ 

Americans 

& Asiatic 

N=27 

(M:17, 

F:10) 

Iliac tuberosity, 

postauricular 

sulcus, 

postauricular 

space of the ilium 

90% 
Postauric-

ular space 

Continued 
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Table 2.1 continued 

 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 

Best 

variables 

Lovell (1989) 
Modern/ 

Europe 

N=36 

(M:13, 

F:23) 

Phenice’s method 83% - 

MacLaughlin 

& Bruce 

(1990) 

Modern/ 

Europe 

N=273 

(M:152, 

F:121) 

Phenice’s method 59-83% 

Subpubic  

concavity  

 

Sutherland & 

Suchey 

(1991) 

Modern/ 

America 
N=1284 Phenice’s method 96% 

Ventral 

arch 

McBride et 

al. (2001) 

Terry 

collection 

N=115 

(M:80, 

F:35) 

Phenice’s method 89.2% 

Subpubic  

concavity  

 

Ubelaker & 

Volk (2002) 

Terry 

collection 

N=198 

(M:99, 

F:99) 

Phenice’s method 88.4% - 

Bruzek 

(2002) 

Modern/ 

France & 

Portugal  

N=402 

(M:204, 

F:198) 

Preauricular 

surface, greater 

sciatic notch, the 

composite arch, 

inferior pelvis, 

and ischiopubic 

index 

95% 

Greater 

sciatic 

notch 

Listi & 

Bassett 

(2006)  

Modern/ 

America 
N=876  

Bruzek’s and 

traditional 

methods 

89% - 

Klales et al. 

(2012) 

Hamann-

Todd & 

Bass 

collections 

N=310  Phenice’s method 
86.2-

94.5% 

Ventral 

arch 

Kenyhercz 

(2012) 

Modern/ 

South 

Africa 

N=105 

(M:61, 

F:44) 

Klales et al.’s 

method 
99.2% 

Ventral 

arch 

Stull et al. 

(2013) 

Modern/ 

South 

Africa 

N=112 
Klales et al.’s 

method 

92.2-

99.2% 
- 

Garcia de 

Leon & Toon 

(2014) 

Modern/ 

Colombia 

N=50 

(M:39, 

F:11) 

Klales et al. & 

Phenice’s 

methods 

Phenice’s 

method 

(82%) 

Klales et 

al.’s 

(2012) 

method 

(66%) 

- 

Klales (2016) 

Hamann-

Todd & 

Bass 

collections 

 N=299 

(M:163, 

F:136) 

Klales et al.’s 

method 
68.7% 

Ventral 

arch 
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2.2.2. Skull 

 

Another reliable group of morphological sex indicators is provided by the skull (Steyn 

and İşcan, 1998; Rogers, 2005; Williams and Rogers, 2006; Komar and Buikstra, 

2008; Saini et al., 2012; Abdel Fatah et al., 2014; Garvin et al., 2014). Males usually 

reach puberty two years later than females and have an extra two years to grow 

somatically (Scheuer and Black, 2000), during which period their muscle mass 

increases. “As a consequence, changes occur both at direct sides of muscle attachment 

to bone and as a response to the dissipation of forces” (Cox and Mays, 2002, p. 119). 

It is these changes that result in sexual dimorphism in the skull. Multifactorial 

influences also have a bearing on this, including genetics, diet, and disease (Cox and 

Mays, 2002). 

 

Males tend to have a larger and more robust skull, with more marked muscle 

attachments (Cox and Mayes, 2002). In the male skull, the supraorbital ridges and 

glabellar region are prominent, the mastoid process is large, the nuchal crest is 

pronounced, and the upper edge of the eye orbits are blunt. The glabellar region in the 

female skull, on the other hand, is relatively smooth, while the supraorbital ridge shows 

small to medium prominence. The superior margin of the orbit is sharp in females 

while the mastoid process is small and smooth. In addition, within the occipital reign, 

external occipital protuberance in males is prominent and the occipital condyles are 

comparatively large (Bass, 2005; Chamberlain, 2006; Steele and Bramblett, 2007; 

Komar and Buikstra, 2008; Fairgrieve, 2010; White et al. 2012). It is important to note, 

however, that the range of sex variation of this kind differs from one population to 

another, with women having more male-type morphology in some populations and 

men having more female-type morphology in others (Ortner, 2003; Steele and 

Barmblett, 2007). For this reason, sex assessment criteria in an archaeological 

population cannot necessarily be transferred to a population of a different period 

(Ortner, 2003) (Fig. 2.2). 
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Fig. 2.2. Males have more prominent supraorbital ridges, glabellar region, mastoid process, 

and occipital protuberance. The male mandible is also thicker, and square shaped with a more 

prominent mental eminence. Source: White and Folkens, 2005, p. 388.  

 

Researchers have claimed to achieve accuracy rates over 90% in sex estimation using 

the skulls traits alone and in combination with pelvis (Table 2.2). Buikstra and 

Ubelaker (1994) present a five-point scale using the nuchal crest, mastoid process, 

supraorbital margin, glabella, and mental eminence. This is similar to the Acsadi and 

Nemeskeri (1970) approach that also uses a five-point scale on the same traits, but 

without the supraorbital margin and including the shape of the orbit and the angle of 

the mandible. Illustrations for use in scoring the cranial traits had previously been 
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published by Acsadi and Nemeskeri (1970). Although these diagrams provided a good 

starting point, they require considerable modification. The Acsadi and Nemeskeri 

coding system was developed specifically for sexing individuals of European ancestry 

and does not encompass the full range of human variation. People from other 

geographical areas often diverge significantly from this European sexual dimorphism 

pattern (Walker 2008). Due to this problem, Walker (2008) developed a new scoring 

system that encompass the extremes observed in a worldwide sample of skulls. In this 

study, a discriminant function analysis was performed using visual assessments of the 

criteria observed by Buikstra and Ubelaker (1994) with a rating scale of 1 to 5, on a 

series of 460 samples from a variety of ethnic backgrounds. The author reported a 

correct sex classification rate of 88%. Later in 2014, Garvin et al. used Walker’s (2008) 

system to assess the reliability of cranial traits in sex estimation, as well as to test the 

effects of different factors such as population, age, and body size on their expression. 

This study was based on a sample of 499 White and Black American individuals and 

yielded an accuracy rate ranging between 74% and 94% (Table 2.2). The authors 

concluded that population factor had significant influence on cranial trait expressions, 

whereas age and body size played no significant role. 

 

During the last decade, advances in imaging technologies have allowed further 

examination of cranial morphological features in sex estimation. Using computer 

tomography (CT) scan images and surface laser scans, researchers have obtained sex 

estimation accuracy rates ranging between 62.2% and 97.5%, based on examination 

of different morphological elements of the cranium (Table 2.2).   

  

The mandible is another dimorphic component of the skull and is therefore important 

for sex assessment (Muller, 1998; Humphrey et al., 1999; Balci et al., 2005; Hu et al., 

2006; Saini et al., 2011; White et al., 2012). Sex differences are reflected in the shape 

and the size of the mandible. The mandible in males is generally thicker and has a 

square shape, with a more prominent and broader mental eminence. The female 

mandible, on the other hand, tends to be thinner, smaller, with a smooth and much less 

defined mental eminence (Byers, 2002; Bass, 2005; Saini et al., 2011; Indira et al., 

2012, White et al. 2012) (Fig. 2.2). In 2006, Hu et al. (2006) analysed 107 Koreans to 
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examine the likelihood of correct sex assessment using the morphological traits of the 

chin. Their results showed that in 92% of males the chin tended to have a square shape, 

while only 55% of female chins exhibited the characteristic pointed shape. The lower 

border of the mandible in 68% of males was rocker shaped, while in 85% of females 

it was straight. Their sex assessment accuracy, based on a combination of traits, rated 

93% and 74% for males and females, respectively (Table 2.2).  

 

Gonial eversion is a male trait in the mandibular body that has long been considered a 

useful component from which to assess sex (Acsadi and Nemeskeri, 1970; Novotny et 

al., 1993; Ferembach et al., 1980). Other researchers, however, have reported 

contradicting results. Loth and Henneberg (1996), for example, have shown that gonial 

eversion is a highly heritable trait that, rather than being related to sex, seems to be 

linked with overall facial architecture. Using this trait they achieved a low sexing 

accuracy rate of only 50%. Similarly low accuracy rates were obtained in other sexing 

studies using gonial eversion (Kemkes-Grottenthaler et al., 2002; Oettle et al., 2009) 

(Table 2.2).  

 

It has been suggested that the mandibular ramus is more sexually dimorphic than the 

mandibular body (Humphrey et al., 1999). The reason why the mandibular ramus can 

be used in sex estimation is that the shape of the ramus is affected by the process of 

mandibular development and masticatory forces, which are distinctly different 

between the sexes (Loth and Henneberg, 1996). Loth and Henneberg (1996) were the 

first to describe a single morphological trait on the human mandible: a flexure on the 

posterior border which was present in males but absent in females. The authors 

analysed a sample of 547 African and American adult individuals from the Dart 

Collection and achieved sexing accuracy rates between 91% and 99% in healthy 

mandibles. They then used this mandibular trait to examine its applicability in 12 fossil 

hominids (early Homo sapiens, Neanderthals, Homo erectus, and Australopithecines). 

It was reported that this trait was also clearly evident in fossil hominids. The results of 

their study, therefore, showed the accuracy and reliability of the mandibular ramus 

posterior flexure as a sex marker over a long period of time. Other studies have also 

confirmed the efficacy and validity of this mandibular feature in sex estimation 
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(Indrayana et al., 1998; Balci et al., 2005; Saini et al., 2011) (Table 2.2). Different 

studies, however, have criticized the sexing accuracy of the mandibular ramus flexure 

when used as a single indicator of sexual dimorphism, suggesting that most 

individuals, regardless of their sex or age, can exhibit ramous flexures (Koski, 1996). 

Further research has also demonstrated that mandibular ramus flexure is an unreliable 

sex indicator due to its low accuracy rates and high inter-observer error (Hill, 2000; 

Hu et al., 2006; Lin et al., 2014) (Table 2.2).  

 

2.2.3. Long Bones  

 

The morphological features of long bones have also been successfully used for sex 

estimation. For example, Rogers (1999) developed a visual method of adult sex 

estimation based on four morphological features of the posterior distal humerus (the 

medial aspect of the trochlea, olecranon fossa shape and depth, and the angle of the 

medial epicondyle). The author analysed 128 modern adults from Bass and University 

of New Mexico collections, and reported 92% correct sex classification. This method 

was re-evaluated by Falys et al. (2005) on 351 left humeri from the documented 

skeletal collection of St Bride’s, London. The study reported olecranon fossa shape as 

the most sexually dimorphic trait, providing 84.6% accuracy. However, the 

combination of all traits provided an overall accuracy of only 79.1%. A similar study 

by Rogers (2009) on 42 documented British and Portuguese adult skeletons resulted 

in an 81% accuracy rate. 

 

Overall, the evaluation of morphological traits for sex estimation is thought to be 

relatively subjective and dependent on the experience of the investigator (İşcan and 

Helmer, 1993). Metric methods for assessing the sex of an individual, on the other 

hand, are considered more objective and repeatable, and not as biased by previous 

observer experience (MacLaughlin and Bruce, 1990), which makes them less 

problematic for sex estimation. 
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Table 2.2. The list of studies using morphological traits of the skull for sex estimation. 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 

Best 

variables 

Meindl et al. 

(1985)   

Hamann-

Todd 

collection 

N=100 

Morphology of 

different regions 

(e.g. occipital, 

chin, supraorbital 

ridge, etc.) 

92% - 

Loth & 

Henneberg 

(1996) 

Modern/ 

African & 

American 

N=547  

Mandibular ramus 

flexure 

 

91-99% 
Ramus 

flexure 

Indrayana et 

al. (1998)  

Modern/ 

Indonesia 

N=150 

(M:75, 

F:75)  

Mandibular ramus 

flexure 

 

90-94% 
Ramus 

flexure 

Hill (2000) 

Hamann-

Todd 

collection 

N=158 

(M:103, 

F:55) 

Mandibular ramus 

flexure 
79.1% - 

Kemkes- 

Grottenthaler 

et al. (2002) 

Modern & 

Medieval/ 

Germany 

N=232 

(M:163, 

F:69) 

Ramus flexure & 

genial eversion 
59-69.3% 

Gonial 

eversion 

Rogers 

(2005) 

Modern/ 

Canada 
N=46 17 cranial traits 89% 

Nasal 

aperture, 

zygomatic 

extension, 

malar 

rugosity, 

supraorbital 

ridge 

Balci et al. 

(2005) 

Modern/ 

Turkey 

N=120 

(M:95, 

F:25) 

Mandibular ramus 

flexure 

 

85.8% 

Ramus 

flexure 

 

Williams and 

Rogers 

(2006) 

Modern/ 

Europe  

N=100 

(M:50, 

F:50) 

20 cranial traits 96% 

Mastoid, 

supraorbital 

ridge, 

architecture 

of the skull, 

etc.  

Hu et al. 

(2006) 

Modern/ 

Korea 

N=107 

(M:74, 

F:33) 

13 mandibular 

traits 
90% 

Contour of 

the lower 

border of the 

mandible 

Walker 

(2008) 

Modern/ 

African 

Americans, 

European 

Americans, 

English, 

Native 

Americans 

N=460 

Nuchal crest, 

mastoid process, 

orbital margin, 

glabella, 

supraorbital ridge, 

mental eminence 

88% Glabella 

 

Continued 
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Table 2.2 continued 

 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 

Best 

variables 

Ramsthaler et 

al. (2010) 

Modern/ 

Germany 

N=50, 

(M:29, 

F:21) 

3D CT scans: 17 

cranial traits 
96% 

Supraorbital 

ridge 

 

Garvin et al. 

(2014) 

Modern & 

Medieval/ 

America 

N=499 Walker’s method 74-94% 
Glabella & 

mastoid 

 

 

2.3. Metric Sex Estimation  

 

Metric methods of sex estimation are based on the quantitative analysis of those 

measurable traits which differ between males and females, such as clavicle length or 

humeral head diameter. Forensic anthropologists and bioarcheologists have relatively 

recently begun to use metric analysis as a standard for sex estimation. Pearson was the 

first to suggest the use of postcranial metrics for sex identification in 1915. However, 

since visual methods of sex assessment are quick and easy to use, and require less 

sophisticated statistical analysis, it has taken a long time for metric analysis to catch 

on (Moore, 2013). Metric methods offer several advantages over morphological 

methods. First, inter- and intra-observer error and subjectivity are typically lower in 

this type of analysis (Christensen et al. 2014). Second, their replicability is relatively 

high compared to morphological methods, the reason being that osteometric landmarks 

appear to be easier to find on a steady basis and valuation is not made according to a 

judgement against a specific scale (Shehri and Soliman, 2015). Third, observers with 

varying experience levels can collect metric data. And, finally, these methods are more 

applicable to statistical analysis and therefore facilitate comparison between different 

samples and studies (MacLaughlin and Bruce, 1990; Adams and Byrd, 2002; Gonzalez 

et al., 2009). 

 

2.3.1. Pelvis 

 

The pelvis has long been considered the most reliable source for sex estimation, using 

both metric and nonmetric methods, due to the modification of the pelvis in females 
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(wider pelvic inlet) to ensure obstetric success. Arsuaga and Carretero (1994) studied 

418 adult hip bones from a modern Portuguese population (227 males and 191 

females) using univariate and multivariate analysis to examine the patterns of sexual 

dimorphism. Their study revealed that, in terms of shape variables, the female hip bone 

was larger with respect to those traits associated with the pelvic inlet. The sciatic notch 

was also broader in the female hip bone. Fourteen of the 34 original variables were 

selected as the best indicators, and sexing accuracy rates of 98.6% for males and 100% 

for females were achieved. In another study by Murphy (2000), the maximum 

acetabular diameter of 56 individuals (21 males and 35 females) from New Zealand 

was measured for sex estimation. The author achieved accuracy rates between 85.2% 

and 86.2%. In 2009, a similar study was conducted on 114 adult sacra from Italy by 

Benazzi et al. In this study, digital photographs were used to take the acetabular 

diameters. The results showed that this method could be used to determine sex with an 

accuracy rate of 93.2%. Steyn and İşcan (2008) used 192 individuals of a modern 

Greek population for sex estimation. The measurements were taken from the 

articulated pelvis, the single os coxa, and the sacrum. The results of this study revealed 

that the diameter of the acetabulum was the single most sexually dimorphic trait, 

producing a prediction accuracy rate of 83.9%. In another study, discriminant function 

analysis was used on a sample of black and white South Africans to investigate metric 

sex estimation from the pelvis (Patriquin et al. 2005). It was concluded that the ischial 

length was the most sexually dimorphic trait (86% accuracy) followed by the diameter 

of the acetabulum (84% accuracy). The results of the multivariate discriminant 

function analysis using all the variables showed accuracy ranging between 94% and 

95.5%. In 2011 Spradley and Jantz found that the single most dimorphic pelvic traits 

were os coxa height and ischium length, providing accuracy rates of 85% and 83% 

respectively. A multivariate discriminant function analysis showed that the os coxa 

could sex 89-90% of the samples correctly (Table 2.3). Osteometric analysis of pelvic 

bones and the sacrum has also been performed using more technologically advanced 

forms of anthropological analysis, such as digital images, radiographic films, and CT 

scan images, on different populations, with sex classification accuracy rates ranging 

from 63% to 100% (Table 2.3). 
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Table 2.3. The list of studies using metric traits of the pelvis for sex estimation 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 

Best 

variables 

Arsuaga & 

Carretero 

(1994) 

Modern 

/Portugal  

N=418 

(M: 227, 

F:191) 

34 linear + 10 

non-metric 

variables 

98.6-100% - 

Murphy 

(2000) 

Archaeological

/New Zealand 

N=56 

(M: 21, 

F: 35) 

Maximum 

diameter of the 

acetabulum  

 

85.2- 86.2%. - 

Igbigbi & 

Msamati 

(2000) 

Modern/ 

Malawi  
N=255 

X-ray films: 

ischiopubic 

index 

87.8-100% - 

Patriquin et 

al. (2005) 

Modern/ South 

Africa 
N=400 

9 various 

variables 
94-95.5% 

Ischial 

length 

Steyn & 

İşcan (2008) 

Modern/ 

Greece 

N=192 

(M:97, 

F:95) 

Articulated 

pelvis, single os 

coxae, sacrum 

60.90-95.4% Acetabulum 

Benazzi et al. 

(2009) 

Archaeological 

/Italy 

N=114 

(M:57, 

F:57) 

Digital 

photographs: 

acetabular 

diameters 

93.2% Sacrum area 

Gonzalez et 

al. (2009) 

Archaeological

/ Colombia 

N=121 

(M:69, 

F:52) 

Photographic 

images: greater 

sciatic notch 

and the 

ischiopubic 

complex 

90.9-93.4% 
Ischiopubic 

complex 

Ekanem et al. 

(2009) 

Modern/ 

Nigeria 

N+214 

(M:114, 

F:100) 

X-ray films: 

ischiopubic 

index 

69-81% - 

Spradley & 

Jantz (2011) 

Modern/ 

various 

populations 

>700 
Sacrum, os 

coxa  

71.88- 

90.46% 

Os coxa 

height, 

ischia length 

Decker et al. 

(2011) 

Modern/ 

America 

N=100 

(M:40, 

F:60) 

3D CT scans: 

Phenice method 

+  metric traits 

100% - 

Small et al. 

(2012) 

Modern/ South 

Africa 

N=145 

(M:87, 

F:58) 

Digital images: 

subpubic angle  
75-86% - 

Zech et al. 

(2012) 

Modern/ 

Switzerland 

N=95 

(M:49, 

F:46) 

Post-mortem 

CT scans: 4 os 

sacrum traits 

76.8-78.9% 

Maximum 

anterior–

posterior 

diameter 

 

Continued 
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Table 2.3 continued 

 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 

Best 

variables 

Karakas et al. 

(2013) 

Modern/ 

Anatolian 

Caucasian 

N=109 
3D CT scans: 

subpubic angel 
90.8% - 

Torimitsu et 

al. (2015a) 

Modern/ 

Japanese 

N=204 

(M:104, 

F:104) 

3D CT scans: 

11 various 

variables 

63-98.1% 
Subpubic 

angel 

Oladipo et al. 

(2015) 

Modern/ 

Nigeria 

N=93 

(M:50, 

F:43) 

Radiographs: 

ischiopubic 

index 

78.6% - 

Savall et al. 

(2015) 

Modern/ 

France 

N=113 

(M:54, 

F:59) 

3D CT scans: 

17 metric traits/ 

decision tree 

92% - 

 

2.3.2. Skull 

 

Many researchers have suggested that the skull is one of the best indicators of sex 

(Holland, 1986; Dayal et al. 2008; Rooppakhun et al. 2010; Santos et al. 2014) In a 

study by Uytterschaut in 1986, a discriminant function analysis was performed based 

on four skull measurements (bizygomatic breadth, glabello-occipital length, nasal 

breadth, and nasal height) taken from three different populations: Dutch, Zulu, and 

Japanese. Uytterschaut reported an accuracy rate ranging between 81% and 89%. In 

another study by Steyn and İşcan (1998) it was found that bizygomatic breadth was 

the best sex indicator in the cranium. They achieved an average accuracy rate of 80% 

using a sample of 44 black males and 47 black females of South African origin. This 

accuracy increased to 86% after the inclusion of five cranial variables. Kranioti et al. 

(2008) also reported similar results in a sample of 90 male and 88 female Greek 

individuals. The authors used 16 craniofacial dimensions and concluded that 

bizygomatic breadth is the single most dimorphic characteristic of the skull, with an 

accuracy rate of 82%. This increased to 88.2% when the five craniofacial dimensions 

(bizygomatic breadth, cranial length, nasion-prosthion, mastoid height, and nasal 

breadth) were included. Rooppakhun et al. (2009) utilized 3D computer tomography 

to study cranial sexual dimorphism in Thai populations. A total of 21 cranial 

measurements were used to estimate the sex of 91 known-sex individuals. The overall 

accuracy of this study was 92.3%, with an accuracy rate of 92.85% among males and 
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91.42% among females. Similar results have been obtained by other researchers in 

different populations (Table 2.4).  

 

While a large amount of research in this area has focused on multiple cranial traits and 

variables, some research has also considered examining specific areas of the cranium, 

either to develop easy and reliable sex estimation criteria, or to have a necessary means 

of estimating the sex of fragmentary crania (Jantz et al. 2013). Using single variables 

such as occipital condyles, the foramen magnum, palate bone, auditory meatus, and 

bony labyrinth, the researchers could successfully assess the sex of the individuals up 

to 84% accuracy. Table 2.4 illustrates different cranial osteometric criteria and their 

sexing validity in different studies.      

 

Another area of the human skull that has received attention as a sex indicator is the 

mandible. Franklin et al. (2008) examined the mandibles of 225 individuals (120 males 

and 105 females) from five different South African tribes (Zulu, Swazi, Xhosa, Sotho, 

and Tswana) to estimate sex both individually and as a group. Using geometric 

morphometric methods, the authors could correctly classify sex in 84% of cases, and 

concluded that the mandibular condyle and ramus were the most sexually dimorphic 

regions of the mandible. The same results (ranging from 80.5% to 84.2% accuracy) 

were also reported by Dong et al. (2015), who used mandibular CT scan images of a 

contemporary Chinese population (96 males and 107 females) for sex estimation. 

Kranioti et al. (2014) conducted a study on the mandibles of contemporary Greeks, 

reporting an accuracy of 80%. The lower accuracy compared to other studies may be 

due to the small sample size (N=70), however, Saini et al. (2011) with a larger sample 

size reported similar accuracy rate (Table 2.4). 
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Table 2.4. The list of studies using metric traits of the skull for sex estimation. 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 

Best 

variables 

Steyn & 

İşcan (1998) 

Modern/ South 

Africa 

N=91 

(M:44, 

F:47) 

12 cranial & 5 

mandibular 

measurements 

80-86% 
Bizygomatic 

breadth 

Graw et al. 

(1999) 

Modern/ 

German 

N=108 

(M:67, 

F:41) 

supraorbital 

margin 
70% - 

Wahl & 

Graw (2001) 

Modern/ 

America 

N=410 

(M:170, 

F:104) 

Petrous 

temporal bone 
74.19% - 

Franklin et al. 

(2006) 

Modern/ South 

Africa 

N=332 

(M:182, 

F:150) 

3D Ct scans: 96 

cranial 

landmarks 

87% - 

Lynnerup et 

al. (2006) 

Modern/ 

Germany 

N=113 

(M:65, 

F:48) 

Internal 

auditory meatus 
70% - 

Dayal et al. 

(2008) 

Modern/ South 

Africa 

N=120 

(M;60, 

F:60) 

21 traits of skull 80-85%. 
Total facial 

height 

Kranioti et al. 

(2008) 

Modern/ 

Greece 

N=178 

(M:90, 

F:88) 

16 craniofacial 

dimensions 
70.2-88.2% 

Bizygomatic 

breadth 

Franklin et al. 

(2008) 

Modern/ South 

Africa 

N=225 

(M:120, 

F:105) 

3D: 38 

mandibular 

landmarks 

84% 

Mandibular  

condyle, 

ramus 

Rooppakhun 

et al. (2009) 

Modern/ 

Thailand 

N= 

(M:56, 

F:35) 

3D CT scans: 

21 cranial 

measurements 

92.3% 
Bizygomatic 

breadth 

Spradley & 

Jantz (2011) 

Modern/ 

various 

populations 

>700 
34 skull 

measurements 
78-90.6% - 

Saini et al. 

(2011) 
Modern/India N=116 

Mandibular 

ramus traits 
80.2% 

Coronoid 

heights 

Garvin & 

Ruff (2012)  

Terry 

collection 

N=119 

(M:63, F: 

56) 

3D surface laser 

scan: 

Browridge and 

chin 

62.2-79.8% Browridge 

Sumati et al. 

(2012) 
Modern/ India N=60 Palate bone 70% - 

Ogawa et al. 

(2013) 

Modern/ 

Japanese 

N=113 

(M:73, 

F:40) 

Imaging 

technologies: 

10 cranial 

measurements 

79-89.9% - 

Osipov et al. 

(2013) 
Modern/ Crete 

N=94 

(M:49, 

F:45) 

3D CT scans: 

bony Labyrinth 
84% - 

 

Continued 
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Table 2.4 continued 

 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 

Best 

variables 

Abdel Fatah 

et al. (2014) 

Modern/ 

America 

N=222 

(M:141, 

F:81) 

3D Ct scans: 11 

cranial 

variables 

97.5% - 

Lin et al. 

(2014) 

Modern/ 

Korea 

N=240 

(M:120, 

F:120) 

3D CT scans: 

10 mandibular 

traits 

88.8%  

Upper 

ramus 

vertical 

height 

Kranioti et al. 

(2014) 

Modern/ 

Greece 

N=70 

(M:36, 

F:34) 

5 mandibular 

measurements 
80% 

Bigonial 

breadth 

Dong et al. 

(2015) 
Modern/ China 

N=203 

(M:96, 

F:107) 

3D CT scans: 

11 mandibular 

measurements 

80.5-84.2% 

Maximum 

mandibular 

length  

Uhl et al. 

(2016) 

Upper 

Palaeolithic/ 

Romany 

N=1 

3D CT scans: 

Osipove et al.’s 

(2013) method 

100% - 

Damera et al. 

(2016) 
Modern/ India N=80 

Digital 

radiographics: 

mandibular 

ramus 

83.3% - 

 

 

2.3.3. Postcranial Bones  

 

Despite the weight attached to the skull as the second most reliable indicator of sex, it 

is generally believed that postcranial bones are superior to the skull in sex estimation. 

To examine the utility of cranial and postcranial traits in sex estimation and to test the 

widely-accepted idea that the skull is a better sex estimator than postcranial bones, 

Spradley and Jantz (2011) compared craniometrics to postcranial metrics to assess 

sexing accuracy across the skeleton. The authors used a large collection for sex 

estimation, including white and black Americans from the Forensic Anthropology 

Data Bank. They found that joint size alone, including tibia proximal epiphyseal 

breadth, femur head diameter, and femur epicondylar breadth, produced correct sex 

classification rates between 89% and 90%, rising to 94% when multivariate analysis 

was performed. The authors then compared these variables to craniometric variables, 

with a univariate sexing accuracy rate of 78% for bizygomatic breadth. However, the 

correct sex classification rates of breadth measurements were observed to be higher 
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after performing a multivariate analysis. It was therefore concluded that, due to the 

higher sex classification rates of postcranial elements, they were preferable to the 

cranium (Spradley and Jantz, 2011). In an early study in 1959, Hanihara measured 

Japanese skulls and scapula, applying a discriminant function analysis for nine 

craniometric measurements and four scapula measurements. The best accuracy rate for 

the skull was 89.7%, and for the scapula 97%. Hanihara (1959) concluded, therefore, 

that the scapula was a more reliable sex indicator.  

 

Various studies have used the dimensions of postcranial bones for sex estimation, and 

the basic principle in most of them is that men exceed women in size (France, 1998; 

Albanese et al., 2005; Brown et al., 2007; Albanese et al., 2008; Spradley and Jantz, 

2011; Spradley et al., 2015). Thieme and Schull (1957) conducted a study to 

investigate sexual dimorphism in various metric long bone variables such as humeral 

length, sternum width, femoral head diameter, clavicle length, ischium length, and 

epicondylar width of the humerus. The authors used a sample of 90 males and 101 

females of African-American origin from the Terry collection. The results of the study 

revealed that the head of the femur was the most sexually dimorphic of all the variables 

and appeared to be consistently larger in males than in females. It was also found that 

the maximum length and epicondylar breadth of the humerus were useful in assigning 

sex. Using all the variables of the different bones combined, the authors obtained a 

correct sex classification rate of 98%. Safont et al. (2000) demonstrated the 

applicability of long bone circumference to the determination of sex in skeletal remains 

that cannot be diagnosed from pelvic or cranial elements. In this study, 151 adult 

individuals from a late Roman site in Spain were examined, and eight different 

circumferences from five long bones were measured. The results showed that all the 

functions obtained by using only one variable provided a correct sex classification rate 

higher than 80%, and the circumference at the radial tuberosity alone provided the 

highest accuracy rate of 92.8%. The functions produced by employing more than one 

circumference yielded an accuracy rate of 91.5% to 100%. The authors also reported 

that the sex of the individuals was estimated more effectively using arm bone rather 

than leg bone measurements, because the circumferences of the arm bones were more 

affected by mechanical stress. Muscular activity also appeared to be extensively higher 
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in males. Sakaue (2004) collected 47 metric variables of five long bones, including the 

humerus, radius, ulna, femur, and tibia of 64 modern Japanese individuals. In this study 

the total accuracy rate of sex assignment ranged from 91% to 95%. In a similar study 

by Nagaoka and Hirata (2009) on a medieval Japanese population, long bone 

measurements were used to estimate the sex of 130 adult individuals. According to 

their study, sex classification accuracy using only one variable was more than 80%, 

whereas multiple variables yielded more than 90% accuracy. Postcranial bones 

(humerus, radius, tibia, ulna, femur, and fibula) are among the most highly used 

elements for sex estimation in the studies of human remains due to their high level of 

sexual dimorphism and reliability. Table 2.5 lists some of these studies.    

 

Table 2.5. The list of studies using metric features of the postcranial bones for sex 

estimation. 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 
Best variables 

Thieme & Schull 

(1957) 

Terry 

collection 

N=191 

(M:90, 

F:101) 

Long bone 

measurements 
98% Femoral head 

 Hanihara (1959) 
Modern/ 

Japan 
N=50 

4 scapula 

measurements 
97% - 

McCormick et al. 

(1991) 

Modern/ 

America 

N=724 

(M=560, 

F=164) 

Clavicle length 

& 

circumference 

93% - 

Sacragi and Ikeda 

(1995) 

Modern/ 

Japan 

N=106 

(M:71, 

F:35) 

Distal end of 

the fibula  
90.6% - 

Safont et al. 

(2000) 

Late Roman/ 

Spain 
N=151 

long bone 

circumferences 
80-100% 

radius radial 

tuberosity 

Frutos (2002) 
Modern/ 

Guatemala 
N=>100 

Height & width 

of the glenoid 

fossa, clavicle 

length, midshaft 

circumference 

86- 95% - 

Sakaue (2004) 
Modern/ 

japan 

N=64 

(M:32, 

F:32) 

47 long bone 

measurements 
91-95% - 

Barrier & 

L’Abbe´ (2008) 

Modern/ 

South Africa 

N=400 

(M:200, 

F:200) 

Ulna, radius  76-86% 

Radius: distal 

breadth 

minimum, 

Ulna: mid-

shaft diameter 

 

Continued 
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Table 2.5 continued   

 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 
Best variables 

Kranioti & 

Michalodimitrakis 

(2009) 

Modern/ 

Crete 

N=168 

(M:84, 

F:84) 

Humerus 

measurements 
85-92% 

Vertical head 

diameter of the 

humerus 

Nagaoka & Hirata 

(2009) 

Medieval/ 

Japan 

N=130 

(M:68, 

F:62) 

Long bone 

circumferences 
80-90% 

Minimal 

circumference 

of humerus 

Dabbs (2009) 

Hamann-

Todd 

collection 

N=803 

(M:495, 

F:308) 

Scapula: 

maximum 

height 

96.81% - 

Dabbs and 

Moore-Jansen 

(2010) 

Hamann-

Todd 

collection 

N=724 

(M:447, 

F:277)  

23 scapular 

measurements 
95.7% - 

Spradly and Jantz 

(2011) 

Modern/ 

various 

populations 

>700 
44 postcranial 

measurements 
72-94.3% 

Humerus, 

radius 

Papaioannou et al. 

(2012) 

Modern/ 

Greece 

N= 147 

(M:81, 

F:66) 

Clavicle, 

scapula 
90-96% 

Maximum 

scapular height 

Albanese (2013) 

Modern/ 

Portugal, 

Canada 

N=370 
Upper limbs 

measurements 

87.4-

97.5%. 
- 

Giurazza et al. 

(2013) 

Modern/ 

Caucasian 

N=200 

(M:100, 

F:100) 

3D CT scans: 

Scapula 
88% - 

 Ahmed (2013) 
Modern/ 

Sudan 

N=240 

(M:120, 

F:120) 

Lower limb 

measurements 

78- 

89.5%. 

Bimalleolar 

breadth 

 

Aparna Vdapriya 

& Rajasree (2013) 

Modern/ 

India 
N=100 

3D CT scan: 

Fibula 
80% - 

Paulis and Samra 

(2015) 

Modern/ 

Egypt 

N=200 

(M:100, 

F:100) 

3D CT scans: 

scapula 
87-97% 

Longitudinal 

length  

Kranioti & 

Apostol (2015) 

Modern/ 

Greece, 

Spain, Italy 

N=452 Tibia 88% 

Upper 

epiphyseal 

breadth 

Hishmat et al. 

(2015) 

Modern/ 

Japan 

N=259 

(M:150, 

F:109) 

3D CT scans: 

lower limb 

measurements 

75.8- 

98.1% 

The ratio of 

the mass 

volume 

to maximum 

length  

Gulhan et al. 

(2015) 

Modern/ 

Turkey 

N=200 

(M:100, 

F:100) 

3D CT scans: 

femoral 

measurements 

91% 

Vertical 

diameter of 

neck 

Meeusen et al. 

(2015) 

Modern/ 

America 
N=214 

Femoral neck 

axis length 
86%. - 

 

Continued 
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Table 2.5 continued 

 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 
Best variables 

Atterton et al. 

(2016) 

Medieval/ 

England 

N=48 

(M:23, 

F:25) 

Clavicle  89.6% 

Maximum 

clavicular 

length 

Krüger et al. 

(2016) 

Modern/ 

South Africa 
N=360 Long bones 56-98% - 

Kranioti et al. 

(2017) 

Modern/ 

Greece 
N=289 Tibia 69-90% - 

 

In order to identify the sex of a skeleton or specimen, it is also possible to use other 

postcranial bones such as the clavicle and scapula, as they differ significantly between 

males and females. Women generally have shorter, smoother and less curved clavicles 

when compared to men. The midshaft circumference of the clavicle is another 

important sex indicator, especially when used in combination with bone weight and 

length in fresh anatomical specimens (Jit and Singh, 1966). The sexing effectiveness 

of clavicle length and circumference were tested by McCormick et al. (1991) on a 

modern European-American population from east Tennessee. Although the authors 

did not employ discriminant analysis or cross-validation – a model validation 

technique that is used to evaluate how the results obtained through a statistical analysis 

will generalize to an independent data set (Madsen and Thyregod, 2010) – they did 

obtain single cut-off values that yielded an overall sex classification rate of 93%. In 

the case of the scapula, its maximum length and the maximum length of the glenoid 

cavity have been recognized as sexually dimorphic (Steele, 1988). Frutos (2002) could 

correctly assign sex to 86% to 95% of skeletons in a study of a Guatemalan forensic 

sample using a combination of clavicle (35 females and 62 males) and scapula (38 

female and 65 males) variables, including height and width of the glenoid fossa, 

clavicle length, and midshaft circumference. Papaioannou et al. (2012) also used the 

measurements of the clavicle and scapula for sex estimation. In total, 14 measurements 

were taken from 147 clavicles and scapulae from 81 males and 66 females from a 

contemporary Greek population. The percentage of cases correctly classified was 90% 

for the clavicle and 96% for the scapula. For more information about sex estimation 

studies using the scapula and clavicle, see Table 2.5.  
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In addition to the bones mentioned above, other bones of human skeletons, such as the 

hyoid bone, ribs, carpals, metacarpals, tarsals and metatarsals have also been used to 

estimate the sex of individuals, providing classification accuracy rates ranging from 

74% to 98%. Some of these studies are summarised in Table 2.6.  

 

Metric analysis, however, despite its high level of objectivity and repeatability, has 

some limitations. Similar to morphoscopic methods, metric techniques are population 

specific. Metric methods of sex estimation have a tendency to yield error due to their 

dependence on absolute differences in measured dimensions of skeletons. In addition, 

they are based on those sectioning points used to differentiate between the two sexes, 

which can only reliably be applied to the population being analysed (Rogers, 2005). 

Nevertheless, skeletal remains, as organic matter, do not survive in poor conditions. It 

is necessary, therefore, to use teeth, as the most durable and resistant human remains 

to mechanical, physical, and chemical types of destruction, to determine sex. The next 

chapter will discuss dental sexual dimorphism and its effectiveness in estimating the 

sex of individuals. 
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Table 2.6. The list of studies using metric features of the different bones for sex estimation. 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 

Best 

variables 

Miller et al. 

(1998) 

Modern/ 

Americans 

N=315 

(M:188, 

F:127) 

Image analysis: 

30 hyoid 

measurements  

69.2-75.2% - 

Kim et al. (2006) 
Modern/ 

Korea 

N=85 

(M:52, 

F:33) 

Digital 

photograph, 34 

hyoid 

measurements 

88.2% - 

Kindschuh et al. 

(2010) 

Terry 

collection 

N=398 

(M:200, 

F:198) 

10 hyoid 

measurements 
82-85% - 

Balseven-Odabasi 

et al. (2013)  

Modern/ 

Turkey 
N=85 

33 hyoid 

measurements 
77.4-81.3% - 

D’Anastasion et 

al. (2014) 

Medieval/ 

Italy 

N=64 

(M:44, 

F:20) 

10 measurements 

of hyoid body 
75-88% 

Body height 

& length 

Barrio et al. 

(2006) 

Modern/ 

Spain 

N=79 

(M:37, 

F:42) 

Metacarpal 

measurements 
81-91%, 

2nd 

metacarpal 

Cologlu et al. 

(1998) 

Modern/ 

Turkey 
N=294 

Sternal ends of 

the fourth rib 
86-90% - 

Wiredu et al. 

(1999) 

Modern/ 

Ghana 

N=346, 

(M:221, 

F:125) 

Sternal end of 

the fourth rib 

measurements 

74-80% - 

Ramadan et al. 

(2010) 

Modern/ 

Turkey 

N=340 

(M:197, 

F:143) 

Image analysis: 

sternum & 4th rib 

measurements 

82.2% 
Sternal area, 

4th rib width 

Macaluso et al. 

(2012) 

Modern/ 

Spain 

F=117 

(M:60, 

F:57) 

Sternal extremity 

of the fourth rib 
86.3% Height 

Kubicka & 

Piontek (2015) 

Modern/ 

Poland 
N=176 

1st rib 

measurements 
81.5% Sternal end 

Manolis et al. 

(2009) 

Modern/ 

Greece 

N=151 

(M:84, 

F:67) 

Metacarpal 

measurements 
83.2-89.8%, - 

Khanpetch et al. 

(2012) 

Modern/ 

Thai 

N=249 

(M:154, 

F:95) 

6 metacarpal 

measurements 
83.7-89.7%, 

5th & 2nd 

metacarpals 

Nathena (2015) 
Modern/ 

Crete 
N=108 

7 metacarpal 

measurements 
85% - 

Mastrangelo et al. 

(2011a) 

Modern/ 

Spain 

N=100 

(M:50, 

F:50) 

9 carpal 

measurements 
97.8% Lunate 

Mastrangelo et al. 

(2011b) 

Modern/ 

Mexico 

N=136 

(M:78, 

F:58) 

9 carpal 

measurements 
81.3-92.3% 

Maximum 

width 

 

Continued 
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Table 2.6 continued 

 

Publication Population 
Sample 

size 
Method 

Accuracy 

rate 

Best 

variables 

Mountrakis et al. 

(2010) 

Modern/ 

Greece 

N=186 

(M:97, 

F:89) 

Metatarsal 

measurements 
80.7-90.1%. - 

Harris & Case 

(2012) 

Modern/ 

European-

Americans 

N=160 
18 tarsal 

measurements 
88.1-93.6%. 

Talus, 

cuboid, and 

1st cuneiform 

Navega et al. 

(2015) 

Modern/ 

Portugal 
N=300 

18 tarsal 

measurements 
88.3% 

Calcaneus, 

talus, 1st & 3rd 

cuneiforms, 

and cuboid 
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CHAPTER 3 SEX ESTIMATION BASED ON THE DENTITION  

 

3.1. Introduction 

 

Dental anthropology is an important aspect of bioarchaeology and forensic 

anthropology. Because teeth are one of the most stable substances in the body, they 

are often the best-preserved human data in forensic and archaeological cases, and are 

sometimes the only usable evidence available for analysis (Anderson et al., 1995; 

Rodríguez, 2004; Vodanovic´ et al., 2007; Fereira et al., 2008; Schmidt, 2008; Zorba 

et al., 2011). Teeth are formed deep within the jaws and then erupt through the gum 

tissue once nearly complete. Unlike the changing shapes of other skeletal elements, 

tooth crown morphology can only be altered by attrition, breakage, or demineralization 

once the crown erupts (Robinson, 2004). Tooth morphology can be used to effectively 

differentiate between populations. The stability and adaptive significance of tooth 

form establish the dentition as a centerpiece in many comparative populational and 

evolutionary studies. Finally, teeth are the only hard tissues of the body that are directly 

observable without dissection or radiography. The following provides a short 

description of the structure and development of the teeth and will then discussed the 

level of sexual dimorphism in dentition.  

 

3.2. General Tooth Form and Functions  

Teeth constitute approximately 20% of the surface area of the mouth, the upper teeth 

significantly more than the lower teeth (Nanci, 2007). The functions of teeth vary, 

depending on their individual shape and size, contour and alignment and location in 

the jaws. Each type of tooth has its own function and shape. Mastication is the function 

most commonly associated with the human dentition, but teeth also are essential for 

proper speech and, in modern times, for esthetics. Dentition interacts directly with the 

environment through food material mastication. Both the internal composition and the 

external morphology of teeth are adapted to this function in considerable detail among 

mammals. Teeth are part of the digestive system. Mastication is the primary function 

of all teeth and are used in cutting, holding or grasping, shearing and chewing or 
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grinding. In adult hominids, incisors are the eight spatulate teeth in the front of the 

upper and lower jaws and are designed to cut food without the use of heavy forces. 

Canines located at the corners of the arch and are designed for cutting and tearing 

foods. In humans there are four premolars in the upper jaw and four in the lower jaw. 

Premolars have both pointed cusps and a broader surface to hold and chewing food. 

Molars make up the rest of human dentition. These are the largest teeth; their extensive 

chewing surfaces emphasize crushing and grinding rather than shearing of food 

material. There are usually six molars in both upper and lower adult human jaws.  

 

All human teeth consist of two main elements: a crown that projects above the gum 

and a root (or roots) that is embedded within the alveolae, or bony sockets of the jaws. 

Where the crown and root meet is the neck, or cervix. The base of the crown is called 

the cervical margin and, girdling the cervical one-third of the crown, there is often a 

broad bulge called the cingulum. Within the tooth exists a small cavity, the pulp 

chamber or cavity, corresponding to the general outline of the tooth. The pulp within 

this cavity is connected to the periodontal membrane through the narrow root canal 

(Hillson, 2002).  

 

Structurally the tooth is composed of enamel, dentin, cementum, and pulp. The enamel 

is the structure that covers the outside of the crown of the tooth. Enamel, dentin and 

cementum are relatively hard since they contain considerable mineral content, 

especially calcium. Only two of these tissues are normally visible in an intact extracted 

tooth: enamel and cementum. The other two tissues (dentine and pulp) are usually not 

visible on an intact tooth.  

 

Enamel is the white, protective external surface layer of the anatomic crown. It is 

highly calcified or mineralized, and is the hardest substance found in the body. As a 

dental covering, enamel is highly adapted to withstand the forces of mastication and 

to resist wear. It is 96% mineral by weight and the remaining substances include 5% 

water and enamel matrix (Avery et al., 2002). Enamel develops from the enamel organ 

(ectoderm) and is a product of specialized epithelial cells called ameloblasts (Scheid 

and Weiss, 2012). 
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Dentin is the hard yellowish tissue underlying the enamel and cementum, and make 

up the major bulk of the inner portion of each tooth crown and root (Scheid and Weiss, 

2012). Dentin is extremely sensitive to temperature and to changes in osmotic pressure. 

Much of the protective feedback that prevents tooth damage during everyday use 

comes from the dentine but importantly also from the periodontal ligament that 

supports the tooth in its socket of alveolar bone (Dean, 1999).  Dentine is not normally 

visible except on a dental radiograph, or when the enamel or cementum have been 

worn away. Mature dentin is composed of about 70% calcium hydroxyapatite, 18% 

organic matter, and 12% water, making it harder than cementum but softer and less 

brittle than enamel (Scheid and Weiss, 2012). Dentine is a product of cells called 

odontoblasts which are located at the junction between pulp and dentine (Dean, 1999). 

Cementum is an interstitial material surrounding the root and binding it to the 

periodontal ligament (Steele and Bramblett, 2007). The cementum is very thin, 

especially next to the cervical line. It is composed of 60% calcium hydroxyapatite, 

30% organic matter, and 10% water (Scheid and Weiss, 2012). However, Melfi et al. 

(2000) states that the mineral content of cementum is about 50%. Cementum meets 

the enamel tissue at the cemento-enamel junction that is located at the neck of the 

tooth. The function of cementum is to protect the root and provide rough surface 

anchorage for attachment of Sharpey’s fibers, which are connective tissue fibers of the 

periodontal ligament (Dofka, 2013). Cementum is about as hard as bone but 

considerably softer than enamel. It develops from specialized cells of the periodontal 

membrane called cementoblasts (Steele and Bramblett, 2007).   

 

Pulp is the soft tissue in the cavity or space in the center of the crown and root called 

the pulp cavity (Scheid and Weiss, 2012). Tooth pulp is the only non-mineralized 

tissue of a tooth. It is a soft connective tissue and like other connective tissue, is made 

of cells, intercellular substance, and tissue fluid (Melfi et al., 2000). The pulp cavity 

has a coronal portion (pulp chamber) and a root portion (pulp canal or root canal). The 

pulp cavity is surrounded by dentine, except at a hole (or holes) near the root tip (apex) 

called an apical foramen. Nerves and blood vessels enter the pulp through apical 

foramen (Scheid and Weiss, 2012). Like dentine, the pulp is normally not visible, 

except on a dental radiograph or sectioned tooth. In life, the pulp cavity houses the 
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arteries, nerves, and odontoblasts lining the pulp cavity (Steele and Bramblett, 2007) 

(Fig 3.1).  

  

Fig 3.1. Tooth structure  

http://3.bp.blogspot.com/-BOHbs2_d6Co/TrdTfoZ2lII/AAAAAAAABOs/EDvT0uEOT- 

Y/s1600/periodontium.jpg                                                                 

 

3.3. Development of the Tooth (Odontogenesis) 

The timing initiation of development of the teeth and their eruption into the oral cavity 

is very important for healthy dentition. This knowledge is also useful in forensics, 

odontology, archaeology, and palaeontology. Dental development is the most accurate 

method of age estimation of subadult skeletons (Saunders, 1992), probably because it 

is under faring tight genetic regulation (Uhl, 2013). However, rate of growth, and the 

timing of spurts or more gradual changes in speed, varies from individual to individual. 

Some control is genetic-witness differences between populations and differences 

between males and females within one population. A proportion of the control is, 

however, environmental. Nutritional plane, dietary deficiencies, incidence of disease 

and even psychological stress are all controlling factors (Bogin, 1999). Development 

of the dentition involves the formation, calcification, and eruption of the crown, as 

well as root growth and development. 

http://3.bp.blogspot.com/-BOHbs2_d6Co/TrdTfoZ2lII/AAAAAAAABOs/EDvT0uEOT-%20Y/s1600/periodontium.jpg
http://3.bp.blogspot.com/-BOHbs2_d6Co/TrdTfoZ2lII/AAAAAAAABOs/EDvT0uEOT-%20Y/s1600/periodontium.jpg
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Humans develop two sets of teeth: The deciduous (primary or “milk teeth”) is about 

half-formed by birth and erupts into the mouth during the next two years. It is replaced 

gradually by the permanent dentition, for which the first tooth starts to form just before 

birth, and the last tooth is finally completed in the early twenties. Each dentition is 

divided into four quadrants: upper left, upper right, lower left and lower right. There 

are 20 deciduous teeth in human dentition, with 5 teeth per quadrant, and 32 permanent 

teeth, with 8 teeth per quadrant (Fig 3.2). The deciduous dentition is smaller in all 

respects in comparison to their permanent counterparts. Since the deciduous dentition 

is replaced by the permanent dentition by normally age 13, less developmental 

emphasis is placed on building highly mineralized deciduous teeth. In such, the 

deciduous dentition is not as strong as the permanent dentition, and the enamel is 

neither as mineralized nor as thick due to differences in diet and facial musculature 

(Tersigni-Tarrant and Shirley, 2013).  
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Fig 3.2. Diagram of upper and lower primary and permanent dental jaws. 

http://cwsda.com/cwsda-worksheets-2 

 

3.3.1. Stages of Development 

Tooth development or odontogenesis is a highly coordinated and complex process 

which relies upon cell-to-cell interactions that result in the initiation and generation of 

the tooth (Cobourne and Orth, 1999). The surface lining an embryo’s developing 

mouth are covered with a layer of tissue known as epithelium, and this is underline by 

a tissue called mesenchyme, which will ultimately develop into different types of 

connective tissue – bone, cartilage, muscle, tendons and blood vessels, dentine and 

http://cwsda.com/cwsda-worksheets-2
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cement (Hillson, 2005). Teeth and other organs develop as a result of a complex series 

of interactions between epithelium and underlying mesenchymal tissue. In the tooth 

20 primary tooth germs develop initially with 32 additional tooth germs differentiating 

to form the permanent dentition. Although each tooth germ develops as an 

anatomically distinct unit, the fundamental developmental process is similar for all 

teeth (Avery et al., 2002).  

 

Tooth formation is a continues process that may be characterized by a series of 

distinguishable stages. The stages are classified according to the shape of the epithelial 

component of the tooth and are named accordingly (MacDougall and Javed, 2010). 

Three different stages are recognized, for example, bud, cap, and bell stage. 

 

The first signs of tooth development are seen during the six weeks after fertilization. 

At that time, mesenchyme cells proliferate into an arch-shaped zone along the line of 

the developing jaws. Epithelium grows into this condensation to produce the so-called 

primary epithelial band, which itself divided into two lobes; the vestibular lamina and 

the dental lamina (Hillson, 2002). At eighth embryonic week starting at the midline 

and spreading posteriorly, there is a continued thickening in the dental lamina in 10 

areas of the upper arch and 10 areas of the lower arch. These 20 localized thickening 

correspond to the position of the future teeth (Brand and Isselhard, 2014). Enamel 

organs for the permanent dentition are initiated from around the sixteenth week after 

fertilization, with the latest of them appearing only after birth (Hillson, 2002). The 

initial budding from the dental lamina at the 10 thickened areas in each arch is referred 

to as the bud stage, the initial stage of definitive tooth development (Brand and 

Isselhard, 2014) (Fig 3.3). Mesenchyme cells proliferate around the bud of epithelial 

cells, to become the dental papilla, responsible for dentine and pulp formation (Hillson, 

2005). Proliferation of oral epithelial cells results in the formation of a bud-shaped 

enamel organ. Proliferating mesenchymal cells surround the bud and form an 

ectomesenchymal condensation. The buds seem to stretch out from the dental lamina 

as they grow. As development continues, the deepest parts of the buds become slightly 

concave (Brand and Isselhard, 2014). It is at this point that the tooth germ passes into 

its cap stage (Fig 3.4). During this stage, the tooth bud grows around the 
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ectomesenchymal cells and builds the enamel or dental organ. Surrounding the dental 

papilla and enamel organ, the dental follicle develops forming all the supporting 

structures of the tooth (Cate, 2003). Also during the cap stage, a critical signaling 

centre, the enamel knot, is formed within the enamel organ epithelium. The enamel 

knot acts as a centre of control for the developing tooth germ (Hillson, 2005). 

Continues growth of the tooth germ leads to the bell stage during which the crown 

assumes its final shape (morphodifferentiation) and the cells that will be making the 

hard tissue (ameloblasts and odontoblasts) acquire their distinctive phenotype 

(histodifferentiation) (Avery et al., 2002) (Fig 3.5). During the bell stage, the cells that 

have been joined to the oral epithelium begin to disintegrate. At the same time, 

connective tissue surrounds the enamel organ, and the dental papilla forms a rather 

dense band of tissue, called the dental sac. Development of the cementum, the 

periodontal ligament, and the lamina dura of the alveolus occur within the dental sac 

(Phinney and Halstead, 2004).   

 

Fig 3.3. Bud stage. Zhang (1998, 201). 
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Fig 3.4. Cap stage. Zhang (1998, 201). 

 Fig 3.5. Bell stage. Zhang (1998, 203). 
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3.3.2. Crown and Root Development 

 

The first dental tissue to be laid down is dentine. The development of the dentine 

occurs just prior to that of the embryonic enamel. Cells on the edge of the papilla called 

odontoblasts, with processing going towards the enamel organ. They lay down the first 

layer of dentine matrix, and tooth formation has begun. The dentine is first 

differentiated on the tip of the developing crown and gradually envelops the entire pulp 

cavity. Immediately after the first layer of dentine laid down, especial epithelial cells 

(calls ameloblasts) lining the inside of the enamel organ and deposit the first dome-

shaped layer of enamel matrix. These process starts in the deepest infoldings of the 

enamel organ. The enamel formed here is the base for the main cups and ridges of the 

crown. Cusps grow by the apposition of layer upon dome-shaped layer of enamel. 

More ameloblasts come into action at the periphery of each layer, so the domes 

increase in size. Cusps merged into one another as infoldings incorrect. Where they 

are separated by deep folds of the enamel organ, ameloblasts continue to work until 

they are back to back, and then stop, leaving deep features. When the ameloblasts over 

the cusps tips come to the end of their matrix production phase, enamel is so longer 

deposited as dome (or cap-shaped layer), but as sleeve-like layers, overlapping down 

the sides of the crown towards the cervix of the tooth (Hillson, 2002).   

 

The root of the tooth consists of dentin covered by cementum. The development of the 

roots begins after enamel and dentine formation has reached the future cemento-

enamel junction. During morphodifferentiation, the enamel epithelium in the apical 

portion of the tooth, together with the dental papilla, forms the outline of the root. At 

this time, the innermost cell layer, or inner enamel epithelium, and the outermost cell 

layer, or outer enamel epithelium, merge in a loop at the site of the cervix of the tooth. 

This is called the cervical loop. The layers then grow downward for a short distance 

as a double row of cells termed Hertwig’s epithelial root sheath. It moulds the shape 

of the roots and initiates radicular dentine formation (Fig 3.5).  

 

The outer and inner enamel epithelium bend at the future cemento-enamel junction 

into a horizontal plane, narrowing the wide cervical opening of tooth germ. This rim 
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of the root sheath, the epithelial diaphragm, encloses the primary apical foramen. As 

the inner enamel epithelial cells of the root sheath progressively enclose more and 

more of the expanding dental papilla, they initiate the differentiation of odontoblasts 

from the cells as the periphery of the dental papilla. These cells eventually form the 

dentin of the root. In this way, a single rooted tooth is formed (Nancy, 2007). Multi 

rooted teeth form essentially in the same way, except that the primary apical foramen 

is divided into two or three apical foramen by tongues of epithelium growing towards 

each other hence dividing the single foramen (Premkumar, 2011).   

 

After the crown and part of the root are formed, the tooth penetrates the mucous 

membrane and makes its entry into the mouth. Further formation of the root is 

supposed to be an active factor in pushing the crown toward its final position in the 

mouth. Eruption of the tooth is said to be completed when most of the crown is in 

evidence and when it has made its contact with its antagonist in opposing jaw (Kumar, 

2004).    

 

3.3. Odontometric Sexual Dimorphism  

 

One of the important applications of odontometrics in physical anthropology is using 

measures of size and proportion to estimate sex (Saunders et al. 2007). According to 

several studies, sexual dimorphism occurs in the permanent dentition of humans 

(Moorrees et al., 1957; Garn et al., 1964; 1966a; 1966b; 1967; Stroud, 1994; Kondo 

and Townsend, 2004; Hillson, 2005; Acharya and Mainali, 2007; Vodanovic´ et al., 

2007; Viciano et al., 2011, 2013, 2015; Sharma et al., 2013; Khamis et al., 2014; Mujib 

et al., 2014; Tuttösí and Cardoso, 2015; Peckmann et al., 2015). In most contemporary 

and archaeological human populations, it is often the case that males possess larger 

permanent teeth than females (Garn et al., 1964, 1967; Alvesalo, 1971; Harris and 

Bailit, 1987; Kieser, 1990; Harris and Hicks, 1998; Scott and Turner, 2000; Hillson, 

2005; Vodanovic´ et al., 2007). Studies of permanent dentition have reported between 

2 and 7% of sexual dimorphism in different populations. For example, Kieser and 

Groeneveld (1989) reported 4% sexual dimorphism in crown measurements of native 

Africans. A study by Lund and Mornstad (1999) showed a percentage of sexual 
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dimorphism between 2.80% to 4.23% in tooth measurements obtained from Swedish 

populations. Sexual dimorphism of 3 to 7% was also reported in Turkish and Jordanian 

populations (İşcan and Kedici, 2003; Hattab et al., 1996). The same has been observed 

in primary teeth. Margetts and Brown (1978), for example, report an average of 2.5% 

as the level of sexual dimorphism in the crown sizes of primary teeth in a sample of 

197 children of Aboriginal Australian origin. In another study by De Vito and Saunders 

(1990) on 152 white Canadian children the recorded average was 4.9%. Harris (1994) 

conducted a study on 120 contemporary black Americans and found an average of 

2.9%. In a worldwide survey by Harris and Lease in 2005, an average of 2% was 

reported across all studied populations. Zadzinska et al. (2008) recorded a total average 

of 2.9% for 113 medieval Polish children.  

 

3.3.1. Factors Relating to Dental Metric Dimorphism  

 

3.3.1.1. Genetics  

 

Many possible causes have been proposed for dental sexual dimorphism. In a study by 

Garn et al. (1967) it was suggested that size differences between male and female teeth 

were probably the result of genetic factors. This study found family-line similarities in 

the magnitude of brother-sister dental size dimorphism, which shows genetic control. 

Nevertheless, in spite of the large amount of work that has been done on family and 

twin studies (see review in Kieser, 1990), researchers have not yet been able to identify 

the exact genes responsible for controlling the size of the tooth.  

 

Amelogenin – the gene code for a protein of the tooth enamel – is located on both the 

Y chromosome and the homologous region of the X chromosome (Hummel and 

Schultes, 2000). The X chromosome, as Garn et al. (1965a) reported, also influences 

tooth dimensions. Among sisters, the rate of concordance was higher than those among 

brothers or brother-sister relationships. Moreover, tooth dimensions were significantly 

smaller among individuals with Turner’s syndrome (XO) compared to those that were 

XX. Also, males that were XYY were found to have larger teeth than normal males 

(XY) (Kieser, 1990; Mayhall et al., 1998). Contrary to these findings, some studies 
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have found no evidence to support the connection between tooth size and genetics 

(Potter et al., 1983; Townsend and Brown, 1978). It has been suggested, however, that 

X and Y chromosomes have differential effects on the development of teeth, which 

may help to explain sexual dimorphism in dental dimensions (Alvesalo, 1997).  

 

Historically it has been observed that sexual dimorphism in tooth measurements is 

mostly linked to the amount of either enamel (Moss and Moss-Salentijn, 1977; Moss, 

1978; Alvesalo et al., 1987) or dentine (Harris and Hicks, 1998; Stroud et al., 1994, 

1998), which, as mentioned before, is related to idiosyncrasies in sex chromosomes. 

In 1997 a study was conducted by Moss and Moss-Salentijn to investigate the 

processes that cause sexual size dimorphism in human canines. In this study, the dental 

measurements and the dentine/enamel thickness for each surface (mesial, distal, 

buccal, and lingual) were examined in 48 males and 51 females. The authors explained 

that the canine showed the greatest amount of sexual dimorphism in terms of crown 

diameters, with male values exceeding those of females by 3% to 9%. They also 

suggested that the reason for sexual dimorphism in canine crowns is the thickness of 

the enamel, as the male process of crown completion (amelogenesis) continues 70 days 

longer in males than in females. Another study, however, proposed that rates of enamel 

formation are the same for both sexes, but that for males it occurs over a prolonged 

period, which would result in larger teeth (Moss, 1978). Alvesalo and Varrela (1991) 

proposed that not only do men have a longer period of enamel completion, but they 

also have a greater amount of dentine. The findings of this study indicated that the X 

chromosome exerts its influence over enamel, while the Y chromosome promotes the 

formation of both enamel and dentine. Saunders et al. (2007) examined a sample of 45 

individuals collected from a historic cemetery site in Belleville, Canada, and found 

similar results. The authors analysed the longitudinal cross-sections of the permanent 

mandibular premolars and canines to determine the level of sexual dimorphism in both 

enamel and dentine. Male canines and third premolars contained larger proportions of 

dentine than their female counterparts. The female canines and premolars, on the other 

hand, had a considerably larger proportion of enamel with respect to overall crown 

size than the males. These findings fit with those of Schwartz and Dean (2005), who 

reported that greater male crown dimensions are related to a larger amount of dentine 
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in permanent teeth. Similar results have also been reported for primary dentition, 

indicating that male teeth exhibit larger amounts of dentine than females (Harris et al., 

2001). The authors did not report any differences in enamel thickness among primary 

teeth. However, it should be noted that the extent of any sex chromosome contribution 

to differences in tooth size between males and females is still to be definitively 

established. Alvesalo and Portin (1980) has shown that there is sexual dimorphism 

displayed in the dentition, with males tending to have larger teeth than females, 

reflecting X chromosome linkage with the Y chromosome also having an impact. For 

example, both 47, XXY males and 47, XYY males have larger teeth than 46, XY 

males. 

 

Several studies have also been conducted based on sexual dimorphism in root size. 

Garn et al. (1979a) showed that the measurements of root length could be as effective 

as crown diameter for sex estimation, exhibiting equal if not additional levels of sexual 

dimorphism. The authors obtained 80% and 87% sex accuracy rates using a 

combination of mandibular root length and crown dimensions, respectively. Similar 

studies also reported that the sex-discriminatory effectiveness of root length exceeded 

that of crown dimensions. However, crown and root dimensions were reported to be 

positively related (Garn et al., 1978; Harris and Couch, 2006). In 2004, Lähdesmäki 

and Alvesalo conducted a study on 47 XYY males and demonstrated that the 

population control males displayed longer root length than the population control 

females. The authors recorded a mean sex difference of 5%, which was similar to the 

amount (6%) recorded by Garn et al. in 1978 for premolars, molars, and mandibular 

canines. Lähdesmäki and Alvesalo’s (2004, 2007) studies confirmed what had 

previously been reported for crown dimensions: that the influence of Y chromosomes 

on the development of root length was greater than that of X chromosomes, which may 

be the cause of sexual dimorphism in root size. In their 2004 study of 47 XYY males, 

Lähdesmäki and Alvesalo reported an increase in root length relative to normal males, 

while the 46 XY females exhibited root lengths close to those of normal males. 

According to Jakobsson and Lind (1973) there is also a distinctive sex difference in 

extreme root length, with females often showing extremely short roots and males 

exhibiting extremely long roots.    
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3.3.1.2. Environment  

 

In 2001 a study was conducted by Dempsey and Townsend to assess the impact of 

genetic and environmental factors on tooth dimensions. The MD diameters of canines 

and premolars exhibited a high degree of non-additive genetic variation. Additive 

genetic variations are those effects that are transmitted directly from parents to 

children. Non-additive variations, on the other hand, consist of all other types of 

genetic variation, including dominance and epistasis. Dominance is where the 

presence of just one allele contributes as much as two of the same allele and epistasis 

is where alleles act differently depending on what other alleles are present, or gene-

environment effects where the contribution of an allele changes depending on the 

environment (Breed and Moore, 2016). In another study by Garn et al. (1979b), the 

primary and permanent dentition of 870 white participants in the National 

Collaborative Perinatal Project were examined. The authors reported a direct relation 

between maternal health status and MD and BL crown diameters. White children with 

larger maxillary and mandibular teeth were associated with maternal diabetes, 

maternal hypothyroidism, and large birth size. In contrast, low birth weight and 

maternal hypertension could lead to a decrease in the size of the crown diameters. 

According to this study, maternal and foetal factors could account for almost half of 

the dental size variations. 

 

Asymmetry of size can also occur among antimeres, which can be classified in three 

categories: the first category, antisymmetry, is defined as an asymmetry caused by 

competitive interaction between sides; the second category, directional asymmetry, is 

when one side has a normal tendency to develop more than the other; and the third 

category, fluctuating asymmetry, is defined as random variations from normal 

symmetry. The first two categories are under genetic control; however, the third 

category is particularly interesting for the study of the impact of environmental factors 

on tooth dimensions as it demonstrates the inability of an organism to carry out 

symmetrical development. According to experiments conducted on laboratory rats 

(Siegel and Doyle, 1975; Siegel et al., 1977; Sciulli et al., 1979), applying heat, cold, 

or noise to pregnant mothers can lead to higher levels of fluctuating tooth asymmetry 
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in offspring. In a study by Sciulli (2003) on a sample of Late Archaic and Late 

Prehistoric individuals from the Ohio River Valley, it was found that such 

environmental stress could be one of the important factors contributing to the reduction 

of the organism’s ability to shield its normal growth pathways against ‘developmental 

noise’. Nevertheless, according to Smith et al. (1982), it is not easy to find a 

relationship between fluctuating asymmetry and prenatal stresses. Studies have shown 

that prenatal alcohol and smoke exposure during pregnancy results in an increase in 

fluctuating tooth asymmetry in children (Kieser and Groeneveld, 1991). In another 

study, however, it was found that living children exhibited no relation between 

fluctuating tooth asymmetry and the indicators of prenatal stress (DiBennardo and 

Bailit, 1978).  

 

A study by Guatelli-Steinberg et al. (2006) on a single Gullah population reported the 

significant impact of environmental stress on the degree of fluctuating asymmetry. 

According to this study, the Gullah population displayed higher levels of fluctuating 

asymmetry when compared to the Native Americans of the Late Prehistoric Ohio 

valley. These findings were compatible with the historical and archaeological evidence 

indicating that the level of environmental stress was considerably higher in the Gullah 

population.  

 

Another environmental stress factor that seems to contribute to tooth size is nutritional 

status. The impact of nutrition on the reduction of tooth size has been examined in 

archaeological contexts. It has been suggested that in nutritionally stressed populations 

it is more probable that teeth do not grow to their maximum genetic size potential 

(Guagliardo, 1982; Simpson et al., 1990). In a study conducted by Larsen (1983) on 

prehistoric maize agriculturalists on the south-eastern U.S. coast, a substantial tooth 

size reduction in primary teeth was reported in comparison to hunter-gatherers. The 

authors suggested that since primary teeth crowns are mainly formed in utero, the 

reduction of tooth size in the later period was due to a decline in maternal health status 

and placental environment. 

 

It is clear that tooth size variability is controlled by a complex interaction of genetic 
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and environmental factors (Hillson, 1998). Due to these factors, tooth size is different 

from one population to another and therefore cannot be applied to the world at large 

(Jain, 2013). 

 

3.3.1.3.  Body Size  

 

Compared to females, males tend to be 15% heavier in body mass and 7% taller in 

stature (Gustafsson and Lindenfors, 2004; Smith and Jungers, 1997). Body 

composition is also sexually dimorphic: the muscle mass of men is greater in 

comparison with that of women, whereas the latter’s bodies contain more fat mass 

(Plavcan, 2012a). Among nonhuman primates, body mass dimorphism ranges from a 

few species in which females have slightly larger bodies than males, to those species, 

such as the gorilla, where male bodies are double the size of their female counterparts 

(Smith and Jungers, 1997). By nonhuman primate standards, the degree of body mass 

dimorphism in humans is low. Body mass in humans is slightly more sexually 

dimorphic compared to gibbons and some of the monogamous and polyandrous 

monkeys. Their dimorphism of size, however, is less than that of chimpanzees and 

bonobos, and so is placed at the low end of the primate range (Gordon et al., 2008; 

Plavcan, 2012b).  

 

There may be a relation between body size and tooth size. Primates, as a whole, exhibit 

high levels of positive correlation between body size and crown size (Gingerich, 1977), 

at least in males (Lucas, 1982), and there also exists a correlation between body size 

sexual dimorphism and crown diameter (Leutenegger and Kelly, 1977). In other 

words, those primates that exhibit low levels of body size dimorphism also exhibit low 

levels of canine dimorphism, and those species that exhibit high levels of body size 

dimorphism also exhibit high levels of canine dimorphism (Johanson and Edgar, 

1996). It is widely accepted that there exists, within any given population, a low but 

positive correlation between tooth size and body size (Garn et al., 1966a, 1968; 

Henderson and Corruccini, 1976; Lavelle, 1977; Perzigian, 1981; Brace et al., 1987; 

Hillson, 2002). With reference to modern primate species, there is a link between a 

polygynous social structure and a pronounced sexual dimorphism in body weight, 
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while the height of the canine teeth is an indication of the greatness of the level of 

aggression in males (Clutton-Brock et al., 1977; Plavcan, 1993; Fleagle, 1999). 

Nevertheless, the link between body weight and the height of the canine is still unclear; 

there has been a gradual decrease in the sexual dimorphism of body weight. However, 

in the early stages of human evolution, the height of canine teeth was already low; as, 

for example, in the case of Ardipithecus ramidus (Plavcan and Schaik, 1997; Suwa et 

al., 2009). It was estimated that, in comparison with a female Australopithecus 

afarensis, a male’s body would weigh 1.5 times more, while the estimation of canine 

dimorphism was much smaller (Fleagle, 1999). This ratio varies slightly in other 

species: modern humans (1.1-1.2), modern chimpanzees (1.2-1.3), and modern 

Gorillas (1.5-1.7) (McHenry and Coffing, 2000). The height of canine teeth, on the 

other hand, was very small in Australopithecus afarensis. The same thing was 

observed in modern humans (Hillson, 2005) Such inconsistencies were explained by 

Plavcan (2000), who cited different selection for canine teeth and body weight; 

according to this study, high levels of sexual dimorphism occurred in both traits due 

to predation pressure, that is the effects of predation on a natural community especially 

with respect to the survival of species prayed upon. The regular use of tools (weapons 

for fighting, for example), however, may be the cause of the reduction of the function 

of the canine teeth in males. 

 

As mentioned earlier, the other factor that contributes to dental sexual dimorphism is 

associated with high rates of male violence and polygyny. However, this factor is 

mostly discussed in relation with the canine, as the most sexually dimorphic tooth in 

humans and non-human primates.  

 

3.3.1.4. Sexual Dimorphism of the Canine 

 

Most studies analyse differences between the sexes in mesiodistal and buccolingual 

tooth dimensions (Moorrees et al., 1957; Garn et al., 1964; Garn et al., 1966a, 1966b; 

De Vito and Saunders, 1990; Hillson et al., 2005; Stojanowski, 2007; Vodanovic´ et 

al., 2007; Viciano et al., 2011, 2015; Hassett, 2011; Zorba et al., 2012; Sharma et al., 

2013). The results of the studies using these measurements have shown that canines 
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tend to exhibit the greatest level of sexual dimorphism among all teeth (Garn et al., 

1966a; Bishara et al., 1989; Plavcan, 2001; Vodanovic´ et al., 2007; Acharya and 

Mainali, 2007; Cardoso, 2008; Khamis et al., 2014; Viciano et al., 2015). The sex 

difference of the mesiodistal diameter of permanent teeth is found to be 4%, with 

canines again having the highest degree of dimorphism (Garn et al., 1964). According 

to Ditch and Rose (1972), the accuracy of sexual size dimorphism is 93% when 

identifying the sex of a skeleton from the canine, as the most useful tooth for sex 

estimation. Kieser et al. (1985) performed a canonical discriminant analysis to 

examine posterior and anterior teeth, and showed considerable sex differences in all 

the studied cases. The results showed that the maxillary canines, second molars, the 

mesiodistal dimension of mandibular canines, and the buccolingual dimension of the 

first premolar were the most sexually dimorphic, yielding sex accuracy rates ranging 

between 70.9% and 93.3%. In another study, 720 teeth of a Saudi population were 

examined (Hashim and Murshid, 1993), and it was suggested that the canine was the 

only tooth with sexual dimorphism. In 2003, Kaushal et al. examined 60 individuals 

from North India and found that the mandibular canines exhibited statistically 

significant sexual dimorphism. The mandibular left canine and the right mandibular 

canine were the two largest teeth (8.8% and 7.9% respectively) contributing to sexual 

dimorphism. It was also revealed that when the width of the canine was greater than 

7mm, the probability of being a male subject was 100%. In another study conducted 

on a sample of 100 individuals of Turkish origin (50 males and 50 females), Işcan and 

Kedici (2003) reported that the upper and lower canines and lower second molar were 

the most sexually dimorphic teeth. Vodanovic´ et al.’s (2007) study on 86 skulls from 

a medieval cemetery near Osjek recorded consistent sexual dimorphism in the 

maxillary canine. In another study by Acharya and Maniali (2007) using a Nepalese 

population, canines were determined as the most significant univariate sex indicator, 

followed by the first and the second molars. In 2011 Zorba et al. conducted a study of 

133 Greek individuals (70 males and 63 females) to measure the mesiodistal and 

buccolingual diameters of 839 permanent teeth. According to the results of this study, 

the most dimorphic teeth were canines followed by first premolar, maxillary second 

premolar, and mandibular second molar. Viciano et al. (2011) examined the skeletal 

remains of 117 individuals from the city of Herculaneum (Italy). The authors reported 
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that the canine had the greatest level of sexual dimorphism, and obtained correct 

classification rates of 76.5% to 100%. Other studies by Angadi et al. (2013) and 

Khamis et al. (2014) on two large samples from India and Malaysia also recorded the 

greatest sexual dimorphism in the lower canines (Table 6).  

 

Although many human sexual characteristics are unique, canine tooth size dimorphism 

is one of the characteristics shared with other primates, which is linked most closely 

to agonistic behaviour (Plavcan, 2011, 2012a). A discussion of this similarity can help 

achieve a better understanding of canine sexual dimorphism in humans. 

 

3.3.1.5.  Canines: Humans and Non-Human Primates 

 

The level of expression of sexual dimorphism in most living primates is one of their 

prominent characteristics, and is mostly observed in the sizes of their bodies and their 

canines (Plavcan 2012a, 2012b; Hillson, 2014). However, this sexual dimorphism is 

much less pronounced in living humans (Leutenegger and Shell, 1977; Plavcan, 2001, 

2012a, 2012b; Plavcan and van Schaik, 1997; Schwartz and Dean, 2001; Hillson, 

2014). In a study conducted by Schwartz and Dean (2001) on a sample of 52 canines, 

it was reported that the degree of sexual dimorphism in mean crown height varied 

considerably among different species: from 11% in humans to 33% in chimpanzees 

and 66% in gorillas and orang-utans. Both males and females varied with respect to 

mean crown height, however males displayed higher levels of variation. According to 

this study, the degree of the expression of canine dimorphism was reflected in the time 

taken to form canine crowns, with male orang-utans and gorillas taking almost twice 

as long as their female counterparts. However, chimpanzees and humans exhibited 

much less difference in timing. Humans and orang-utans had the thickest canine cuspal 

enamel, taking the longest time to form in terms of overall crown formation time. In 

terms of these characteristics, canines in modern humans were evidently distinguished 

from canines in chimpanzee and gorillas. Based on Schwartz and Dean’s (2001) study, 

Hillson (2014) concludes that since early hominins and humans have relatively similar 

canine morphology, they may also have similar developmental dimorphism. This is an 
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important issue when interpreting fossil hominins, in which it is difficult to establish 

the level of dimorphism. 

 

It has been demonstrated that the degree of canine dimorphism among higher primates 

(monkeys, apes, and humans) is positively correlated with the form of intrasexual 

competition that the males and females of the species in question normally engage in 

(e.g. Plavcan, 2013). Those species in which intense male-male competition occurs 

more frequently than female-female competition exhibit greater degrees of canine 

dimorphism than those species with less or equal intrasexual competition (Fleagle, 

2013). For example, in the case of gorillas, large canines are used in male-male 

combat. Gibbons (in which both sexes have pronounced canines of similar size) also 

use their canines in intrasexual competition (Gray and Garcia, 2013). According to 

Plavcan et al. (1995), this characteristic in gibbons’ dentition reflects selection for 

weaponry in both males and females, indicating that both sexes hold territories and 

aggressively defend them from members of the same sex (Mitani, 1985). By contrast, 

the male and females of Callicebus, which does not display such behaviour, have 

smaller canines (Robinson et al., 1987). This suggests that the degree of canine 

dimorphism is not only the product of sexual selection acting on males; rather, it is the 

result of selection acting on both male and female weaponry. Since females are 

engaged in the competition for resources, it is therefore not unreasonable that at least 

some variation in canine dimorphism is a consequence of both natural and sexual 

selection (Plavcan, 2011). 

 

One of the features that distinguishes hominin species from other species such as apes 

and monkeys is a reduction in the sexual dimorphism of canine size (Wolpoff, 1976; 

Greenfield, 1992; White et al., 2009; Plavcan, 2011; Gray and Garcia, 2013). Given 

adequate sample sizes of the earliest groups of Australopithecus afarensis, it is 

proposed that there is little sexual dimorphism in the size of their canine teeth (Kimbel 

and Delezene, 2009). According to the results of other studies, both earlier hominins 

(Sahelanthropus, Ardipithecus and Australopithecus anamensis) and later hominins 

exhibit no considerable canine sexual dimorphism (Plavcan and van Schaik, 1997; 

White et al., 2009; Plavcan, 2012b; Ward et al., 2010). In a study conducted by Suwa 
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et al. (2009), it was found that the height of canine teeth in both male and female 

Ardipithecus ramidus was very low and similar to the size of canines in female 

chimpanzees. Researchers have suggested different theories to explain this change in 

canine morphology, such as dietary adaptations, fighting and threat displays, and the 

replacement of handheld weapons with big canines in fighting (Greenfield, 1992). A 

dietary explanation seems unlikely as, according to Brunet et al. (2002) and Suwa et 

al. (2009), there is no evidence of a radical dietary change in Sahelanthropus and 

Ardipithecus. Other studies have considered the change in canine morphology as a 

decrease in male-male competition and a tendency towards long-term sociosexual 

bonds early in hominin evolution (Halloway, 1967; Lovejoy, 2009). According to 

Lovejoy (2009), for example, the similarities in the size of the canine shows 

Ardipithecus ramidus’s tendency to form long-term, mostly socially monogamous 

relationships. Dixson (2009) suggests that the reduction of canine dimorphism in 

hominins is due to the very nature of bipedalism, which enables males to fight 

differently. In contrast to other animal groups that normally make direct frontal attacks 

in which canines are situated in front, hominins normally use their arms to grab and 

punch, an aspect of bipedalism. It also enables them to use weapons when needed 

(Dixson, 2009).  

 

However, despite the fact that human canines have undergone a considerable reduction 

in their size, they are still the most sexually dimorphic teeth (Kieser, 1990). 

 

3.4.  Sex Estimation and Dental Measurements  

 

The estimation of sex using dental features is mainly achieved by either comparing the 

tooth measurements of males and females, or comparing the frequencies of non-metric 

variants such as Carabelli’s trait of upper molars or distal accessory ridge of the upper 

and lower canines (Teschler-Nicola and Prossinger, 1998; Vodanovic´ et al., 2007). 

Similar to skeletal sex indicators, odontometric features differ among and within 

populations (Kieser, 1990; İşcan and Kedici, 2003; Hillson, 2005). This means that, in 

order to use dental variables for identification, it is necessary to first determine 

population-specific values (Vodanovic´ et al., 2007). In osteoarchaeology and forensic 
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anthropology studies, metric methods of sex estimation from the dentition are usually 

based on two sets of measurements: the maximum MD (mesiodistal) and BL 

(buccolingual) crown diameters, and cervical MD and BL diameters.  

 

One of the main advantages of teeth with respect to sex estimation is that developing 

permanent dentition could be very useful for assessing the sex of immature skeletal 

remains. The crowns of permanent teeth develop early and, once formed, remain 

unchanged during growth and development—except in cases where specific changes 

and disorders of function, pathology, or nutrition have an effect on the normal 

dimensions of teeth—so any effect on sexual discrimination in permanent teeth that 

can be observed in adults should also be present in subadults (Cardoso, 2008). This 

makes it possible to measure young individuals’ teeth and directly compare them 

against their adult counterparts. Bones, however, cannot be used for sex estimation 

unless they have reached adult proportions (Hillson, 2005).  

 

The archaeological studies in which dental measurements are used to estimate sex in 

adults have provided sexing accuracy rates of between 76% and 100% (Rösing, 1983; 

Ditch and Rose, 1972; Scott and Parham, 1979; Mays, 1996; Duncan, 1998; 

Vodanovic´ et al., 2007; Viciano et al., 2011; Tuttösí and Cardoso, 2015; Kazzazi and 

Kranioti, 2016 a, b, 2017). It may be difficult, however, to reliably take dental 

measurements, because it requires some practice. It is also desirable that all the 

measurements are repeated so that their accuracy can be established (Işcan and Steyn, 

2013). 

 

3.4.1 Maximum Crown Measurements  

 

The maximum MD and BL crown diameters are among the most common types of 

tooth metric variables. Most dental anthropologists have based their studies on crown 

measurements with respect to sex estimation (Bishara et al., 1986; De vito et al., 1990; 

Hattab et al., 1996; Liu et al., 2000; Karaman, 2006; Acharya and Mainali, 2007; 

Khangura et al., 2011; Angadi et al., 2013; Mujib et al., 2014; Singla et al., 2015). This 

may be due to the fact that crown dimensions are easier to record, whereas other 
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measurements, such as cervical diameters, are comparatively more difficult to take, 

especially when the teeth are still in the jaw.     

 

Over the years, a number of studies have reassessed the definition of MD and BL 

crown diameters (Miyabara, 1916; Nelson, 1938; Van Reenen, 1966; Schamschula et 

al., 1972). Among these definitions, Moorrees and Reed’s (1964) definition has 

received considerably more attention than the others. According to this study, MD 

crown diameter is defined as (1) the largest mesial to distal dimension, and (2) is 

parallel to the occlusal surface. BL crown diameter is taken as the greatest distance 

between the buccal/labial and lingual/palatal surfaces in a plane perpendicular to the 

MD diameter. Therefore, the basis of this measurement system is considered to be the 

axis of the MD crown diameter (Fig. 3.6). Another method that is widely used is 

proposed by Goose (1963). Goose’s (1963) and Moorrees and Reed’s (1964) methods 

are mostly similar, but the former specifies that MD measurements should be taken at 

the midpoints of a tooth’s contact points with its neighbours. In the case of tooth 

malocclusion, MD diameters should be taken in the area where the contact points 

might have been if the tooth were in normal occlusion. According to this method, the 

BL dimension should be taken at right angles to the plane in which the MD dimension 

is obtained, with no regard for the position of the crown.  

 

Fig 3.6. Crown and cervical measurements: MDmax, maximum mesiodistal crown diameter; 

BLmax, maximum buccolingual crown diameter; MDcerv, mesiodistal cervical diameter; 

BLcerv, buccolingual cervical diameter. Source: Viciano et al., 2011, p. 99.      
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Crown measurements have been widely used by many researchers for sex estimation 

in different populations. Garn et al. (1967, 1977, 1979a) used the crown MD and BL 

measurements of permanent teeth and correctly estimated sex of up to 87% of the 

individuals studied. Primary crown measurements also successfully classified sex of 

60-90% of the sample in studies by Black (1978) and De Vito and Saunders (1990). 

 

Ditch and Rose (1972) were the first to show that tooth measurements can be useful 

for sex estimation in archaeology when using skeletal remains that are fragmentary or 

poorly preserved. They used the crown MD and BL measurements of 39 male and 48 

female adults from the Dickson Mound site (Illinois). The sex of the skeletons was 

first assessed using postcranial remains. In total, six stepwise discriminant functions 

were generated, and 89%-96% of the studied samples were correctly classified. 

Owsley (1982) used the same method to estimate the sex of 82 Arikara adults (Native 

Americans in North Dakota). The author recorded the MD diameter of the canine only, 

and BL diameters of all the permanent teeth. Stepwise discriminant function analysis 

produced a sexing accuracy rate of 91%, with canine measurements as the most 

affective variables. Teschler-Nicola (1992) analysed the crown MD and BL 

measurements of both permanent and primary teeth of 172 individuals (85 males and 

87 females) from a Bronze Age population in Austria. Discriminant function analysis 

using both permanent and primary dentition obtained 75-81% correct sex assignment. 

In 2003 İşcan and Kedici studied the permanent crown diameters in 100 Ankara 

University students (50 males and 50 females). The BL measurements of 14 teeth 

(except third molars) were collected and used for stepwise discriminant analysis. The 

authors reported a low level of sexual dimorphism in crown BL diameter and could 

sex only 77% of the individuals correctly. For a more detailed description of the studies 

on sex estimation using crown diameters, refer to Table 3.1.   

 

3.4.2. The Limitations of Crown Measurements   

 

In spite of the usefulness of dental crown measurements, there are a number of 

limitations that impact their efficacy. The first limitation is the alteration of crown 

diameters due to varying levels of expression of non-metric traits (Garn et al., 1968). 
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When lower molars have extra cusps (e.g. cusp 6, cusp 7, protostylid), for example, 

the size of the overall tooth at the maximum dimensions of the crown increases. The 

second limitation, according to Hillson et al. (2005), concerns the difficulty that is 

normally met with when measuring the MD crown diameters, when the teeth are 

tightly fixed in the jaw. This is because when teeth are firmly wedged against the 

adjoining tooth there is not enough space for the calliper points to be placed on the 

maximum convexity of the mesial and distal crown sides. Researchers, therefore, 

prefer to work with needlepoint callipers. In some cases, it is possible to slightly move 

the teeth in the jaw so that there is access for measurement, but it is still nearly 

impossible to push the points far enough in. Also, there is a high risk of a delicate 

specimen being damaged very easily (Hillson et al., 2005). The third limitation, again 

as suggested by Hillson et al. (2005), is related to dental wear when recording the 

maximum measurement of contact points. Dental wear is the term used to describe a 

reduction in the size of the tooth crown, which proceeds continuously during life 

(Wallace, 1974; Hillson, 2002, 2005; Koche and Poulsen, 2009). This reduction is 

caused by either tooth-to-tooth contact (attrition), or rubbing a foreign object against 

the surface of the tooth (abrasion) (Kaidonis et al., 1993; Cox and Mays, 2002; Lucas, 

2004; DeLong and Burkhart, 2013). As a result of dental wear, crown diameters are 

altered and the recording of dental morphology is obscured. A moderate wear of the 

occlusal surface of the crown can lead to a significant decrease in the MD 

measurement. As with the BL diameter, however, only excessive dental wear can 

affect it (Hillson, 2002). In the case of extreme dental wear, all the evidence of enamel 

is erased and the possibilities of making measurements or morphological 

identifications are eliminated. This is a common problem among archaeological 

skeletal samples. According to a study by Van Reenen (1982), when the crown is so 

worn away that the dentine is exposed, the percentage of the reduction in MD length 

could be as much as 10%. In the case of secondary dentine exposure, this percentage 

could reach as much as 20% (Van Reenen, 1982; Fitzgerald and Hillson, 2005). 

 

Most researchers exclude teeth that are too worn to measure, which leads to two 

problems in practice. According to Hillson et al. (2005) the first problem is related to 

the degree of dental wear. It is not possible to positively determine how much wear is 

http://www.worldcat.org/search?q=au%3ADeLong%2C+Leslie.&qt=hot_author


63 
 

too much, because a very small degree of attrition can result in a noticeable difference. 

Researchers have reported dental measurements to the nearest 0.1 mm. Such a 

difference can easily be caused by a small amount of wear. This leads to the second 

problem. By excluding a large number of worn teeth, the sample size is drastically 

reduced (Mayhall, 2000; Hillson, 2002). MD crown diameters have exhibited strong 

impact from approximal attrition –a type of tooth wear that occurs on those surfaces 

which form points of contact between adjacent teeth-, which makes the comparison of 

children’s little-worn dentition (permanent) with adult’s well-worn dentition invalid. 

This is problematic when using dental measurements to sex skeletal remains of 

children, as it is difficult to differentiate between male and female juvenile skeletons. 

In this method, the sex of adults (as a baseline group) is independently identified using 

pelvic or skull morphology, but if the teeth in the baseline group are very worn, it is 

not possible to compare them with the little-worn teeth of children. In addition, other 

factors such as ancestry, dental pathologies, non-metric variations, or the irregular 

shape of third molars as a common dental complication in modern or archaeological 

populations can affect the reliability of comparisons as such.   

 

3.4.3. Cervical Tooth Measurements  

 

Several researchers have proposed alternative dental measurements that are less 

affected by the problems associated with crown measurements. According to an early 

work by Goose (1963), a number of studies (Azoulay and Regnault 1893, Black 1902, 

Goose 1956) have proposed the MD diameter of the neck of teeth as alternatives. This 

is obtained by measuring the necks of teeth parallel to the normal MD and BL 

diameters. In a study by Falk and Corruccini (1982), measurements were taken from 

100 skulls from 5 different human populations at the intersection between enamel and 

cementum (cemento-enamel junctions) as the maximum cervical length and breadth. 

Their study showed that these measurements could produce similar results as those 

obtained using the maximum dental crown dimensions. In a more recent study, Hillson 

et al. (2005, 418) provided a thorough description of these alternative tooth 

measurements. They suggested the addition of diagonal crown dimensions of molar 

tooth and cervix dimensions at the cemento-enamel junctions (CEJ). They also defined 
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the MD cervical measurement and the BL cervical measurement as “the distance 

between the most occlusal points of the cemento-enamel junction curve on the mesial 

and distal sides” and “The maximum measurement at the cemento-enamel junction 

from labial/buccal to lingual/palatal” respectively (Fig. 3.1). Examining a total of 

2,559 unworn and isolated teeth, the authors reported that cervical tooth diameters 

could provide similar results to those of crown diameters. In this article, a new dental 

calliper was also introduced, specifically designed to measure the cervical and crown 

diameters of teeth in situ. According to their results, the impact of dental wear on these 

measurements is relatively small, which leads to a great increase in sample size and 

makes it possible to compare the heavily-worn teeth of adults against less-worn teeth 

of juveniles. The alternative dental measurements that Hillson et al. (2005) have 

proposed are particularly useful in taking measurements where there is only a 

relatively small amount of enamel crown height available. This eventually allows 

access to MD diameters at the cervical-enamel junction, where the surrounding teeth 

can no longer obscure them when still in the jaw. Moreover, considering the location 

of the CEJ with regards to the common non-metric traits of the crown, it is probable 

that non-metric trait expressions would have little impact on the measurements. 

Several studies confirm high correlation between these variables and those of tooth 

crowns. Therefore, it can be concluded that they represent the same genetic expression 

of dental metric variation as traditional crown diameters (Hillson et al., 2005; 

Stojanowski, 2007). These advantages make cervical measurements a perfect 

odontometric method for sex estimation. 

 

In 2007 a test of Hillson et al.’s (2005) method was conducted by Stojanowski (2007). 

The aim of this study was to evaluate the possibility of using cervical diameters “as 

proxies for homologous crown metrics” (Stojanowski 2007, p. 234). Stojanowski 

(2007) based his study on testing the differences between traditional crown 

measurements and cervical measurements. Using a skeletal sample collected from the 

Windover Pond site from 7500 BC, the author reported that BL cervical diameters 

could yield similar results as crown diameters, contrary to MD cervical diameters. His 

findings were therefore in conflict with those of Hillson et al. (2005). According to 

Aubry (2014) this difference could be explained by the material used in the two 
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studies. Hillson et al. (2005) applied the method to a collection of loose teeth, which 

is very different from typical osteoarchaeological collections. In the study by Aubry 

(2014), the limitations of the application of Hillson et al.’s (2005) method to 

archaeological materials were identified. He reported that it was difficult to place the 

calliper tips correctly at MD landmarks, as suggested by Hillson et al. (2005), for many 

in situ teeth. Their recommendation that researchers rotate teeth to access the 

suggested landmarks resulted in large errors, because not all teeth could be rotated. 

Placing the calliper tips at the MD landmarks described by Hillson et al. (2005) is 

difficult for many teeth when measured in the jaw because of the shape of the tooth at 

the cervical margin in cross-section. In addition, Aubry (2014) noticed that the 

measurements differed depending on the position from which they were taken 

(buccal/lingual).   

 

The suggested BL dimensions of molars also raise other problems, which produced 

heterologous measurements across tooth class due to differential reduction in the distal 

cusps and also the existence of the enamel extension (see chapter 8). To solve these 

issues, Aubry (2014) suggested some modifications to the Hillson et al.’s (2005) 

method: 

 

1) Taking the MD measurements only from the buccal side for all anterior and 

posterior teeth following the cervical margin line.  

 

2) Taking only the buccal portion of the posterior teeth in MD diameters.  

3) Taking only the mesial portion of the posterior teeth in BL measurements.  

 

Tuttosi and Cardoso (2015) used both Hillson et al.’s (2005) and Aubry’s (2014) 

cervical tooth methods for sex estimation and concluded that the BL measurements of 

the molars defined by Aubry (2014) might increase the reliability of the measurements 

due to landmarks being more clearly defined.  

 

Cervical measurements have been used by many researchers for sex estimation. 

Vodanovic´ et al. (2007) used crown and cervical measurements for sex estimation in 
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an archaeological sample from Croatia. A total of 86 skulls dating from the late 19th 

and 20th centuries were used for sex estimation. Sex was assessed based on both 20 

craniofacial features and dental measurements. Crown MD and BL, crown height, and 

cervical MD measurements were taken on all permanent teeth. The correct sex 

classification rate using only craniofacial features was 56%, which increased to 86% 

when combined with dental measurements. The authors also reported a high level of 

sexual dimorphism in cervical MD and crown BL measurements.  



In another study by Viciano et al. (2011) both traditional crown and cervical 

measurements were used for sex estimation in an archaeological population from Italy 

(Herculaneum, Naples). In total 38 tooth dimensions from 147 individuals, including 

117 adults and 30 subadults, were recorded. Stepwise discriminant analysis correctly 

classified 76-100% of the samples, with the canine as the most sexually dimorphic 

tooth in adults. Based on the adult tooth dimensions, sex estimation was also possible 

for 22 of the subadult individuals. The authors reported that cervical measurements 

were more useful in sex estimation than crown measurements, as six out of the nine 

obtained functions involved some cervical diameters. This is because the crowns of 

the teeth were affected by most of the limiting factors, while the degree to which the 

cervix was affected was not as great. In 2015 Viciano et al. applied the same method, 

including diagonal crown and cervical diameter of the molars, to three different Iron 

Age populations from Italy. 88 metric variables were recorded in 149 adults and used 

to perform logistic regression analysis. This study reported the lower canine to be the 

most sexually dimorphic tooth, followed by the maxillary and mandibular first and 

second molars. The overall sex classification accuracy rate ranged from 84% to 96%. 

The results of this study also confirmed the utility of cervical diameters for sex 

estimation, because 18 out of 21 developed logit equations were a combination of 

cervical or diagonal cervical diameters. Another study by Viciano et al. (2013) on a 

large contemporary Spanish population (150 males and 119 females) also reported 

cervical diameters as the most sexually dimorphic measurements, providing an 

accuracy rate of 79.5% to 93%.    
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Similar results have been reported by other studies (Zorba et al., 2012, 2013; Mujib et 

al., 2014). For example, in 2012, Zorba et al. used multiple crown and cervical 

diameters to sex 107 modern Greek adults (53 males and 54 females). MD and BL 

crown and cervical diagonal measurements were taken on 344 permanent maxillary 

and mandibular molars. The results of their study showed that cervical diameters were 

more accurate and sexually dimorphic than crown diameters. The accuracy rate was 

found to be 93% for all molar diameters and 88.4% for cervical diameters only. The 

highest percentage of sexual dimorphism was also observed in cervical diameters of 

maxillary and mandibular second molars. In a similar study also by Zorba et al. (2013), 

the sex classification accuracy rate for molar measurements using cervical diagonal 

diameter was 88.4%, while using crown diagonal diameter it was 85%. This study also 

confirmed the high degree of sexual dimorphism in cervical measurements compared 

to crown measurements. 

 

Crown and cervical diagonal measurements of molar and canine teeth were also used 

for sex estimation in a modern Indian population (50 males and 50 females) (Mujib et 

al., 2014). Stepwise discriminant analysis was used and correctly classified sex in 71% 

of cases; however, the accuracy rate of this study was lower than in previous studies, 

but the authors also confirmed that cervical diameters were more dimorphic than 

crown diameters. The same measurements were used for sex estimation in a modern 

African-American population (Peckmann et al., 2015). Four diagonal measurements 

were taken on the permanent maxillary and mandibular molars of 53 males and 50 

females. The results of a direct discriminant analysis showed a sex classification rate 

of 72.6-100%, however the cross-validated data showed a much lower rate (40-

72.3%). Stepwise discriminant analysis showed an accuracy rate of 63.9-77.6% for 

both original and cross-validated data. The authors also used the discriminant functions 

which were previously developed for a modern Greek population to sex the American-

African individuals. Due to the low accuracy rate of the study (53.8-63.6%), the 

authors concluded that the degree of sexual dimorphism in tooth size is different 

between populations and therefore considered odontometric data as population 

specific. The results of the comparison between cervical and crown diagonal diameters 

were in contrast to previous studies (Viciano et al., 2013, 2015; Zorba et al., 2012, 
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2013; Mujib et al., 2014). According to Peckmann et al.’s (2015) study, crown 

diagonal diameters were presented in most of the stepwise discriminant functions (6 

out of 9), showing that the crown diagonal diameters were more reliable for sex 

estimation then the cervical diagonal diameters.  

 

In 2015 Tuttösí and Cardoso analysed the cervical diameters of the permanent teeth in 

a small archaeological sample (42 individuals) from Pender Island. The sex of the 

individuals was first assessed using pelvic morphological traits and then tooth 

measurements. Logistic regression analysis and sectioning point approach showed that 

the best sex estimation variables were the mesiolingual-distobuccal diameter of the 

mandibular first molar and the MD diameter of the mandibular second molar, 

providing an accuracy rate of 86.7% and 85.71% respectively. Nevertheless, the most 

potentially sexually dimorphic measurements were eliminated from the analysis due 

to the small sample size, and more consistent estimations of reliable sex classification 

accuracy were prevented due to unbalanced sex samples. Hassett (2011) analysed the 

sexual dimorphism in cervical diameters of canine teeth. The collections studied 

included 32 known-sex adult individuals and 74 adult individuals whose sex was 

assessed using osteological features. Discriminant analysis using the cervical 

diameters of maxillary and mandibular canines classified sex in 94% of the known sex 

sample and 95% of the osteologically estimated sex sample. Hassett also concluded 

that cervical diameters were highly repeatable with a low inter-observer error 

(technical error of measurement 0.20 mm), and could provide more accurate sexing 

results compared to traditional crown diameters. Some of the studies on cervical tooth 

measurements in sex estimation are listed in Table 3.1. 
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Table 3.1. The list of studies using tooth measurements for sex estimation.  

Publication Population Sample size Method 
Accuracy 

rate 

Best 

variables 

Ditch and Rose 

(1972) 
Modern/ USA 

N=87 

(M:39, F:48) 

Crown 

diameters 
89-96% U & LC 

Black (1978) Modern/ USA 
N=133 

(M:69, F:64) 

Crown 

diameters 

(deciduous) 

63.9-67.7 UM1 

Garn et al. 

(1979a) 
Modern N=49 

Crown 

diameters & 

root length 

63-80% LC  

Owsley (1982) Modern/ USA 
N=82 

(M:41, F:41) 

Crown 

diameters 
91% U & LC 

Owsley & Webb 

(1983) 
Modern/ USA 

N=176 

(M:86, F:90) 

Crown 

diameters 
65-81% LC 

Rösing (1983) 
Archaeological

/ Egypt 

N=55 

(M:28, F:27) 

Crown & 

root length 

diameters 

90-97% LC- crown 

Kieser et al. 

(1985) 

South Africa 

Caucasoid 
- 

Crown 

diameters 
70.9-93.3% UC 

De Vito & 

Saunders (1990) 

Modern/ 

Canada 

N=162 

(M;82, F:80) 

Crown 

diameter 

(deciduous) 

76-90% UI2 

Teschler-Nicola 

(1992) 

Bronze Age/ 

Austria 

N=172 

(M:85, F:87)  

Crown 

diameters  
75-81% - 

Tsutsumi et al. 

(1993) 
Modern/ Japan 

N=194 

(M:96, F:98)  

crown 

length, 

width & 

thickness 

70.6-78.4%. 
Crown 

width of UI2 

Hashim & 

Murshid (1993) 

Modern/ 

Saudi Arabia 

720 

Permanent 

teeth 

Crown 

diameters 
- U & LC 

Lund & Mornstad 

(1999) 

Modern/ 

Sweden 

N=58 

(M:29, F:29)  

Crown & 

distobuccal-

mesiolingual 

- UC 

Nair et al. (1999) 
Modern/ South 

India 

N=108 

(M:50, F:58) 

Crown 

diameters 
- LC 

Kaushal et al. 

(2003) 

Modern/ North 

India 
N=60 

Crown 

diameters 
- LC 

İşcan & Kedici 

(2003) 

Modern/ 

Turkey 

N=100 

(M:50, F:50) 

Crown 

diameters 
73-77% U & LC 

Ateş et al. (2006) 
Modern/ 

Turkey 

N=100 

(M:50, F:50) 

Crown 

diameters 
81% U & LC 

Harris & Couch 

(2006) 
Modern/ USA 

N=148 

(M:57, F:97)  

Crown & 

root length 

diameters 

(incisors) 

- 
Root length-

UI1 

 

Continued 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ate%C5%9F%20M%5BAuthor%5D&cauthor=true&cauthor_uid=17027313
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Table 3.1 continued 

 

Publication Population Sample size Method 
Accuracy 

rate 

Best 

variables 

Vodanovic et al. 

(2007) 

Medieval/ 

Croatia 

N=86 

(M:48, F:38) 

Crown & 

cervical 

diameters 

86% UC 

Acharya and 

Mainali (2007) 
Modern/ Nepal 

N=123 

(M:65, F:58) 

Crown 

diameters 
72.95.5% UC 

Stojanowsky 

(2007) 

7500BC/ 

USA 
N=140 

Crown & 

cervical 

diameters 

- LM1 

Boaz and Gupta 

(2009) 

Modern/ South 

India 

N=100 

(M:50, F:50) 

Crown 

diameters 
- 

LC- Reverse 

dimorphism  

Zorba et al. 

(2011) 

Modern/ 

Greece 

N=133 

(M:70, F:63) 

Crown & 

cervical 

diameters 

- UC 

Viciano et al. 

(2011) 
79AD/ Italy  N=117  

Crown, 

cervical & 

diagonal 

diameters 

76.5-100% U & LC 

Acharya et al. 

(2011) 
Modern/ India 

N=105 

(M:53, F:52)  

Crown 

diameters 
76-100% - 

Tardivo et al. 

(2011) 

Modern/ 

France 

N=58 

(M:26, F:32)  

3D- mineral, 

total, & pulp 

volume of 

canines 

100% 
Total 

volume- LC 

Hassett (2011) 
Post medieval/ 

England 
N=111 

Canine-

cervical 

diameters 

93.8-95% - 

Zorba et al. 

(2012) 

Modern/ 

Greece 

N=107 

(M:53, F:54) 

Molars- 

crown & 

cervical 

diagonal 

diameters 

77.4-93% U & LM2 

Zorba et al. 

(2013) 

Modern/ 

Athens 

N=101 

(M:51, F:50) 

Molars- 

crown & 

cervical 

diagonal 

diameters 

65.5-88.4 % - 

Angadi et al. 

(2013) 
Modern/ India 

N=600 

(M:294, 

F:306) 

Crown 

diameters 
68.1-74.8% LC 

Viciano et al. 

(2013) 
Modern/ Spain 

N=269 

(M:150, 

F:119) 

Crown, 

cervical, 

diagonal 

diameters 

79.5-93%  U & LC 

Khamis et al. 

(2014) 

Modern/ 

Malaysia 
N=400 

Crown 

diameters 
70.2-83.8% LC 

 

Continued  



71 
 

Table 3.1 continued 

 

Publication Population Sample size Method 
Accuracy 

rate 

Best 

variables 

Mujib et al. 

(2014) 
Modern/ India 

N=100 

(M:50, F:50) 

crown & 

cervical 

diagonal 

diameters 

71% UC 

Zorba et al. 

(2014) 

Modern/ 

Greece 

N=102 

(M:58, F:44)   

Root length- 

canines & 

incisors 

58.6-90%. UI2 

Tuttosi & Cardoso 

(2015) 

4500-3000 

BP/Pender 

Island 

N=42 

Crown, 

cervical, 

diagonal 

diameters  

86.7-85.71%  LM1 

Viciano et al. 

(2015) 
Iron Age/ Italy N=149 

Crown, 

cervical, 

diagonal 

diameters 

84-96%. LC 

Peckmann et al. 

(2015) 
Modern/ USA 

N=103 

(M:53, F:50) 

Molars- 

crown & 

cervical 

diagonal 

diameters 

72.6-100% LM1 

Tardivo et al. 

(2015) 

Modern/ 

France 

N=210 

(M:105, 

F:105) 

3D- Total 

volume of 

canines 

82.3-85.2%.  - 

Capitaneanu et al. 

(2016) 

Modern/ 

Belgium  

N=200 

(M:100, 

F:100) 

Panoramic 

radiographs: 

tooth length 

& width 

80% 

Tooth 

length- U & 

LC 

 

3.4.4. Tooth Root Measurements  

 

Tooth root measurements have also been used for sex estimation. However, compared 

to crown diameter, sexual dimorphism in root dimensions has been relatively neglected 

in sex estimation. There is a significant gap between root-oriented and crown-oriented 

studies in sex assessment researches, which becomes more important considering the 

high level of sexual dimorphism of root measurements (in comparison with crown 

measurements) shown by previous studies (Garn et al., 1978, 1979a; Harris and Couch, 

2006). Although there is a very small body of research focusing on sexual dimorphism 

in root measurements, and although the evidence confirming their effectiveness in sex 

assessment is nearly non-existent, the functionality of root measurements in 

transferring the forces of occlusion to the maxillary/mandibular bone indicates their 
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importance as indicators of sexual dimorphism, considering that a male’s bite force is 

larger than that of their female counterparts (Bakke et al., 1990; Julien et al., 1996). 

 

All of the sex estimation studies based on root dimensions are based on root length 

measurements. According to Garn et al. (1979a), root length is the maximum length 

measured from the cemento-enamel junction to the apex of the tooth. Root length can 

be very useful for sex estimation as root measurements are not affected by tooth wear, 

as is often the case for crown measurements and, moreover, in cremated material, for 

example, crowns might not be preserved but roots might, therefore increasing the 

potential efficacy and usefulness of roots (Gocha and Schutkowski, 2013). In addition, 

compared to most crown or cervical measurements and non-metric methods (e.g. 

morphological traits of the cranium or pelvis), root length measurements contain a 

higher level of objectivity and require less experience (Zorba et al., 2014). Moreover, 

similar to other dental measurements, root length also can be used for the separation 

of the remains of female and male subadult individuals with a high level of accuracy 

(Rösing, 1983).  

 

Garn et al. (1979a) used a combination of crown MD and BL measurements and root 

length of mandibular permanent teeth for sex estimation. Their results showed that 

root length by itself provided equal or better sex classification results than crown MD 

or BL measurements alone. For example, the average of correct sex classification for 

crown MD, BL and root length were 60.4%, 60.6%, and 64.6% respectively. However, 

the accuracy rate increased to 80% when using a combination of root length and crown 

measurements, and to 87% using root length as well as mandibular crown 

measurements. Rösing (1983) also used crown and root length measurements for sex 

estimation, in an archaeological collection from Egypt. He sexed the subadult 

individuals based on the discriminant function formulae developed from adult 

permanent teeth measurements. The accuracy rate of this study ranged between 90 and 

97%. According to Rösing (1983), root length was the least sexually dimorphic 

variable and its inclusion in the analysis reduced the sex classification accuracy. This 

was in conflict with the results reported by Garn et al. (1979a), which could be due to 

the homogeneity with regards to age of the individuals in the former study (Rösing, 
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1983). In another study by Harris and Couch (2006) the sexual dimorphism of root 

length was analysed in a modern white American population. Four measurements, 

including crown MD length, overall crown height, crown height, and tooth length, 

were taken on the permanent maxillary and mandibular incisors of 148 individuals (57 

males and 97 females). Their study showed that root length was more sexually 

dimorphic than crown measurement (6% and 2% respectively) and had more power to 

discriminate between males and females. In a recent work by Zorba et al. (2014) the 

sexual dimorphism of root length in a modern Greek population was examined. The 

maximum root length was collected from 774 permanent single-rooted teeth of 102 

individuals (58 males and 44 females). The results of their study showed that maxillary 

second incisors and canines were the most dimorphic teeth, and the highest percentage 

of sexual dimorphism was also reported for maxillary teeth (16.56%). Accuracy of sex 

estimation ranged from 58.6% to 90% (Table 3.1).  

 

In the last decade, the advances in imaging technologies have provided the researchers 

with new methods and techniques which can be used non-invasively to gather 

anthropological information that is beneficial for sexual dimorphism and sex 

estimation in different population. The following chapter will discuss these new 

techniques in more details.  
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CHAPTER 4 SEX ESTIMATION USING 3D METHODS  

 

4.1. Introduction 

 

The phenomenon that in recent years has been referred to as virtual anthropology 

employs a multidisciplinary approach towards the analysis of human anatomical data, 

which involves mixing quantitative analysis with digital technologies (Weber and 

Bookstein, 2011). The measurement-related methods used in sex assessment studies 

have usually been limited to linear measurements obtained using hand-held callipers. 

However, after technological advancements in digital imaging and computer 

technology, new bone and dental phenotypes and measurements can now be defined 

and measured in 3D. As a result of this new method, better anatomical discrimination 

and clearer understandings about fundamental biological processes in the development 

of the bones and teeth can potentially be provided. In recent years, researchers have 

confirmed the effectiveness and usefulness of image analysis in 2D over hand-

measurement methods, due to their reliability and rapidity. 3D methods, on the other 

hand, allow a substantial increase in the metrical and morphological information that 

can be obtained from human remains (Smith et al., 2009).  

 

The advantages of hand-held callipers are that they are, by comparison, simple to use 

and easily transportable, and the reasonable accuracy and reproducibility of manual 

measurements obtained from skeletal remains have been confirmed by different 

studies (Moorrees et al., 1957; Hunter and Priest, 1960). Nevertheless, in order to avoid 

the sharpened beaks of callipers damaging the samples care needs to be taken. This 

limitation can be reduced by using plastic callipers; however, these still can easily 

damage the tooth crown, particularly in more fragile cases, and could also lead to the 

removal of dental pathologies such as calculus from adjacent teeth in archaeological 

samples. Additionally, it is possible to obtain only a limited number of linear 

measurements, and they are time-consuming to record (Bolton, 1962; Hunter and 

Priest, 1960; Richardson and Malhotra, 1975).  
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Image analysis techniques provide a more reliable and accurate approach, allowing for 

both high reliability and more extensive examination. The advantage of this system 

over manual methods is that it permits researchers to obtain multiple measurements 

from a single image, and that subjectivity is reduced when identifying landmarks due 

to the automation of procedures during measurement (McKeown et al., 2002). In this 

chapter two of the most common virtual methods in sex estimation will be explained.   

 

4.2. Geometric Morphometric Methods 

 

Among the most effective tools for studying the size and shape of human remains are 

geometric morphometric methods. Geometric morphometric analysis is conducted 

when traditional methods cannot be used to quantify the morphology of rigid structures 

that contain curves and bulges (Steyn et al., 2004; Kimmerle et al., 2008). By using 

this method, researchers are able to assess morphological traits in details which show 

differences among skeletons. The term geometric morphometrics (GM) was first used 

by Corti (1993), and consists of methods that are predominantly based on 3D co-

ordinates of homologous landmarks that describe the object under study (Bigoni et al., 

2010). GM enables the researcher to detect the differentiation of variability that is 

caused by both size and shape when studying the form of biological objects. Compared 

to the results that have been obtained so far using other methods, the utilization of 

statistical GM procedures for the quantification of shape and size provides more 

accurate results and therefore increases the level of reliability (Bookstein, 1991; Rohlf, 

2003; Slice, 2007). 

 

One of the most common utilizations of geometric morphometrics in forensic and 

physical anthropology is related to sex assessment using different parts of the skeleton 

(Table 4.1). For example, Gonzales et al. (2009) used the greater sciatic notch and 

ischiopubic complex morphology of 121 individuals from a documented Portuguese 

collection for sex estimation. Their statistical analysis showed an average accuracy of 

90.9% for the greater sciatic notch and an average accuracy of 90.1-93.4% for the 

ischiopubic complex. Kranioti et al. (2009) performed a GM study of the humerus for 

sex estimation in a modern Cretan population. In total, 12 landmarks were selected on 
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the proximal and distal end of the humeri. The study reported a total classification 

accuracy of over 89% when both size and shape variables were combined. In another 

study, by Perlaza (2014), lateral radiographs of 60 adult frontal bones were used for 

sex estimation. This study reported sex classification accuracy of 84.31%. Some of the 

GM studies on sex estimation using different human bones are summarised in Table 

4.1.  

 

      Table 4.1. The list of GM studies using different bones for sex estimation. 

Publication Population Sample size Method 
Accuracy 

rate 

Best 

variables 

Green & Curnoe 

(2009) 
Modern/ Thai 

N=144 

(M;89, F:55) 
Cranial traits 86.8% - 

Bigoni et al. 

(2010) 

Modern/ 

Bohemia 

N=139 

(M:73, F:66) 

Craniofacial 

analysis  
70.4-100% Upper face 

Chovalopoulou et 

al. (2013) 

Modern/ 

Greece 

N=176 

(M:94, F:82) 

Palate and 

base of adult 

crania  

74.8-90.4% Cranial base 

Perlaza (2014) - 
N= 60 

(M:30, F:30) 
Frontal bone 84.31% - 

Franklin et al. 

(2007) 

Modern/ 

Various 

populations 

N=  96 
Mandible/ 

Subadult 
59% - 

Franklin et al. 

(2008) 

Modern/ South 

Africa 

N=225 

(M:120, 

F:105) 

Mandible/ 

Adults 
83.1% - 

Oettlé et al. 

(2009) 

Modern/ South 

Africa 

N= (M:46, 

F:28) 

Mandibular 

gonial 

eversion 

71.4-73.9% - 

Gonzales et al. 

(2009) 

Modern/ 

Portuguese 
N= 121 Pelvis 90.1-93.4% 

Ischiopubic 

complex 

Bytheway & Ross 

(2010) 

Modern/ 

Americans 
N= 200 Os coxa 98-100% - 

Kranioti et al. 

(2009) 
Modern/ Crete N= 97 Humerus 89.7% 

Distal 

epiphysis 

 

GM methods have not been used for sex estimation in odontometric analysis. 

However, these methods have been used on tooth morphology analysis in hominins 

(Gomez-Robles et al., 2007; Liu et al., 2010), 3D tooth surface reconstruction 

(Buchaillard et al., 2007) and bite-mark analysis (Kieser et al., 2007).  

 

 

https://www.researchgate.net/profile/Maria_Eleni_Chovalopoulou
http://www.sciencedirect.com/science/article/pii/S0018442X08000577
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4.3. Methods Utilizing Computed Tomography (CT) 

 

Medical imaging such as Computed Tomography (CT), provided the opportunity for 

three dimensional (3D) imaging of the skeletons. CT is a non-invasive, non-destructive 

technique that permits the 3D analysis of mineralized tissues as well as of their 

physical properties. Digital cross sections or slices of an object are rebuilt by CT 

scanners that can be stacked to generate 3D volumes. These 3D volumes enable the 

generation of computerized images of samples that, after being manipulated, 

sectioned, dissected, and measured, reveal both the internal and the external 

morphology. As a result of such methods, internal information on the morphology of 

rare, fragile, small, and valuable samples of both species that are extant and those that 

have become extinct can be accessed (Kim et al., 2007; Swain and Xue, 2009; Abel et 

al., 2012). In addition to making the visualization of hidden structures and details 

possible, CT also allows for the investigation of morphological variations within 

samples and the performance of advanced morphometric analysis (Rossi et al., 2004). 

 

CT can yield a substantial amount of information, due to the ability of the slices to be 

recreated in any plane, and the data to be represented in the form of 2D and 3D images. 

The simultaneous or separate demonstration of internal and external anatomy is also 

possible, as well as qualitative and quantitative assessment of the images (Rhodes et 

al. 1999). Due to recent technological advances, CT systems can increase the spatial 

resolution and slice thickness to the micron scale, which results in the further 

refinement of the detail (Plotino et al., 2006; Swain and Xue, 2009).  

 

CT scanning has allowed for a better examination of the sexually dimorphic 

characteristics of the human skeleton. Previous studies have proved it to be a suitable 

tool for establishing sexually dimorphic characteristics in different anatomical areas 

(e.g. Shearer et al., 2012; Djorojevic et al., 2014; Gulhan et al., 2015; Ekizoglu et al., 

2016). For example, in a sex estimation study by Djorojevic et al. (2014) the CT scans 

of 150 Spanish adults were used to create 3D models of the os coxae. In total, 9 inter-

landmark linear distances were examined, and sex was correctly classified in 89.3-

95.3% of the sample. Ekizoglu et al. (2016) investigated the morphometry of the tibia 
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in a modern Turkish population. In total, 7 parameters were measured on 203 adult 

individuals. The classification accuracy in this study ranged from 79% to 86%. A study 

by Abdel Fatah et al. (2014) used 3D models of 222 crania from white Americans for 

sex estimation. The authors reported a correct classification rate of over 95%. See 

Table 4.2 for more studies on sex estimation using 3D analysis of bones. 

 

Table 4.2. The list of CT scan studies using different bones for sex estimation. 

Publication Population Sample size Method 
Accuracy 

rate 
Best variables 

Roopakhun et al. 

(2009) 
Modern/ Thai 

N=91 

(M:56, F:35) 

Cranial 

measurements 
92.3% - 

El-sherbeney et 

al. (2012) 
Modern/ Egypt 

N=120 

(M:61, F:59) 

Petrous 

portion of 

temporal bone 

77.96-83.6% - 

Osipov et al. 

(2013) 
Modern/ Crete N= 94 Bony labyrinth 76-84% 

Radius of 

curvature  

Abdel Fatah et al. 

(2014) 

Modern/ Bass 

collection 
N=222 Cranial traits 95.5-97.5% 

Bizygomatic 

breadth 

Amin et al. (2015) 
Modern/ 

Jordan 
N=192 

Mastoid 

process 
90.6% 

Intermastoidale 

distance 

Decker et al. 

(2011) 

Modern/ 

Americans 

N=100 

(M:40, F:60) 

Metric and 

non-metric-

Pelvis 

100% - 

Djorojevic et al. 

(2014) 

Modern/ 

Spanish 

N=150 

(M:75, F:75) 

Os coxae 

measurements 
89.3-95.3% 

Acetabular 

diameter 

Torimitsu et al. 

(2015a) 

Modern/ 

Japanese 

N=208 

(M:104, 

F:104) 

Pelvis 

measurements 
62-98.1% Subpubic angle 

Jung et al. (2014) 
Modern/ 

Korea 

N=72 

(M:36, F:36) 
Distal humerus 93.1% - 

Hishmat et al. 

(2015) 

Modern/ 

Japanese 

N=259 

(M:150, 

F:109) 

Lower limb 

long bones 
75.8-98.1% - 

Gulhan et al. 

(2015) 

Modern/ 

Turkey 

N=200 

(M:100, 

F:100) 

Femoral 

measurements 
91% - 

Ekizoglu et al. 

(2016) 

Modern/ 

Turkey 

N=203 

(M:124, 

F:79) 

Tibia 

measurements 
79-86% 

upper 

epiphyseal 

breadth 

Badr El Dine & El 

Shafei (2015) 
Modern/ Egypt 

N=120 

(M:54, F:66) 

12th thoracic- 

first lumbar 

vertebrae  

96.3% 
12th thoracic 

vertebrae 

Mahfouz et al. 

(2007) 

Modern/ Bass 

collection 

N=228 

(M:133, 

F:95) 

Patella 

measurements 
83.77-90.3% - 
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The usage of 3D systems to study dental morphology was developed in the early 

1960s. However, they were then very high-priced and, due to the lack of computer 

power at the time, the possibilities for data acquisition and analysis were very limited. 

Since data collection was very time-consuming and landmarks were located with a 

great deal of subjectivity, early methods were limited by low measurement accuracy 

(Smith et al., 2009). After the introduction of computer tomography and laser 

scanning, however, a new sphere of activity was opened up in the realm of dental 

imaging and measurement. One of the advantages of this technology is that it allows 

for the definition and obtainment of a broader range of measurements, as well as 

integral calibration. These systems also enable the manipulation and storage of 3D data 

in electronic form and thus the generation of virtual models of dentition. 

 

Dental CT scans have been used in different research areas, such as dental morphology 

of fossil specimens (McErlain et al., 2004; Spoor et al., 2010; Smith et al., 2010; 

Margvelashvili et al., 2013; Crevecoeur et al., 2014), tooth development (Smith et al., 

1997; Krarup et al., 2005; Smith et al., 2010; Dong et al., 2014; Smith and Boesch, 

2015), dental pathology (Gerloni et al., 2009; Seiler et al., 2013; Dedouit et al., 2014; 

Ceperuelo et al., 2015), tooth wear (Kasai and Kawamura, 2001; Margvelashvili et al., 

2013; Le Luyer et al., 2014), tooth morphometrics (Kim et al., 2007, 2013; Sherrard 

et a., 2010; Liu et al., 2010), and age estimation (Yang et al., 2006; Someda et al., 

2009; Tardivo et al., 2011; Star et al., 2011; Sakuma et al., 2013; De Angelis et al., 

2015). 

 

Kim et al. (2007) evaluated the accuracy of micro-CT scans in dental metric analysis. 

Thirty linear distance measurements were taken on six first incisors and six first molars 

using four different assessment methods, including dental callipers, 2D photographic 

images, 2D and 3D images obtained by scanning data, and 2D and 3D images obtained 

by micro-CT data. The measurements made by imaging methods were compared with 

direct measurements taken by digital callipers. The results showed that the variables 

made by the micro-CT scanner were similar to those made by the digital callipers, and 

showed that micro-CT is an easy and accurate method for taking linear tooth 

measurements. In another study by Sherrard et al. (2010) the reliability of con-bean 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Crevecoeur%20I%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dedouit%20F%5BAuthor%5D&cauthor=true&cauthor_uid=24234584
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ceperuelo%20D%5BAuthor%5D&cauthor=true&cauthor_uid=25456564
http://www.ncbi.nlm.nih.gov/pubmed/?term=Margvelashvili%20A%5Bauth%5D
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computed tomographs (CBCT) in tooth and root length was examined. A total of 28 

premolar and 24 incisor teeth were measured. The tooth and root lengths were 

collected first by a digital calliper (actual measurements) and the results were 

compared with the measurements derived from CBCT volumetric data. The results 

showed that actual measurements and CBCT measurements were not significantly 

different, and the mean difference between the two sets of data was less than 0.3 mm. 

A similar study by Liu et al. (2010) reported a difference of -4% to +7% between the 

actual and the CBCT measurements. Kim et al. (2013) studied the accuracy of both 

crown and root length measurements in 94 premolar teeth obtained by CBCT in a 

Korean population. The differences between CBCT-based measurements and direct 

measurements collected by digital callipers were not significant for both crown and 

root length measurements; however, the limit of agreement range was wider for root 

length than crown length measurements  

 

As mentioned before, 3D CT scan images have been frequently used for sex estimation 

in morphometric analysis, particularly using the pelvis and skull (Decker et al., 2011; 

Djorojevic et al., 2014; Franklin et al., 2014; Dedouit et al., 2014; Torimitsu et al., 

2015a,b; Ji et al., 2010; Uthman et al., 2012; Tambawala et al., 2015; Kanthem et al., 

2015). However, unlike 3D CT scan images of human bones, dental 3D scan images 

have not been widely used for sex estimation. To the best of the author’s knowledge, 

the only studies of this kind are Tardivo et al.’s (2011, 2015). In these studies, the pulp 

volume and the total volume of the maxillary and mandibular canines were used for 

sex estimation. The authors reported that canine volume measurements are highly 

sexually dimorphic and provided an accuracy classification rate of 100% (Table 3.6). 

However, the validity of this method in sex estimation needs to be tested using other 

tooth types. In addition, dental pathologies such as caries (particularly occlusal caries) 

and tooth wear will considerably affect the size of the tooth crown, and in more severe 

cases will result in pulp exposure (Scully et al. 2010; Van Noort 2013) and eventually 

alter the measurements. The current study attempts to overcome these issues by 

measuring the volume of the root from the apical to the cemento-enamel junction 

(CEJ).  
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As mentioned in previous chapters, in the field of forensic anthropology and 

bioarchaeology, a wide range of skeletal remains and methods are available to choose 

from for sex estimation. The pelvis and postcranial bones, as the most sexually 

dimorphic elements in the human body, are widely used in both morphological and 

morphometric sexing methods. However, due to their delicacy they are more prone to 

post-mortem damage, and this necessitates the usage of a more durable substance, 

namely teeth, as the most highly mineralized tissue in the human body. Considering 

the high level of sexual dimorphism in dental measurements, they can be an effective 

substitute for sex estimation, particularly in archaeological collections. However, 

similar to osteological sex estimation methods, odontometric methods are population-

specific and cannot be universally applied. Therefore, the collection of data from 

different populations is important for dental sexual dimorphism. As there is currently 

no odontometric reference data for Iranian archaeological populations, the present 

study contributes to the development of standards for sex estimation. This study uses 

2D, 3D cervical and RV measurements, which compared to traditional dental 

measurement methods are more effective and useful in studies concentrating on 

prehistorical skeletal remains, as they make it possible to include teeth with alterations 

caused by wear, cultural modification, pathology (e.g. caries), or post-mortem damage. 

This allows a larger dataset to be achieved and a wider range of ages to be represented. 

The following chapter will explain the material and methods used to examine the 

reliability and efficacy of these measurements in archaeological samples for sex 

estimation.  
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CHAPTER 5  MATERIALS AND METHODS 

 

5.1. Introduction 

 

This study was conducted on skeletal remains from Hasanlu and Dinkha Tepe, both 

housed at the University of Pennsylvania’s Museum of Archaeology and 

Anthropology (UPM). Hasanlu Tepe is one of the largest and most often studied 

archaeological sites in Iran. The site is located southwest of Lake Urmia in the Ushnu-

Sulduz valley of northwest Iran, in the province of West Azerbaijan (Fig. 5.1). Hasanlu 

Tepe consists of two separate topographic zones. The Citadel or High Mound is 25 

meters high and 200 meters in diameter, surrounded by a Low Mound, which includes 

a cemetery, standing 8 meters above the surrounding plain. Hasanlu currently 

measures 600 meters at its widest observable point, however modern villages and local 

agricultural activities have reduced the actual size of the site (Dyson, 1989). The 

Dinkha Tepe site is located 15 miles to the west of the Hasanlu site in the Solduz 

valley. The Dinkha mound measures 400m in diameter and is 200m high.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1. Hasanlu is located in northwest Iran (in the province of West Azerbaijan, south of 

Lake Urmia). The orange dot in the map shows Hasanlu.  
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The lack of the remains from Hasanlu and the exceptional archaeological context that 

they provide make the skeletal remains of this region particularly interesting. They 

consist of a cemetery group and an assemblage of individuals belonging to a captured 

city. The current investigation was mainly focused on the contemporaneous Iron Age 

sub-samples obtained from both the cemetery (the Low Mound) belonging to c.1450 

to c.800 BCE, and the destruction level (the High Mound) belonging to c.800 BCE. 

 

5.2. Material 

 

5.2.1. Hasanlu 

 

The Hasanlu site was first excavated by M. Rad and M. Farhadi under a commercial 

excavation permit in 1934 (Stein, 1940). Two years later, in 1936, British archaeologist 

Sir Aurel Stein conducted the first scientific excavation of the site (Stein, 1940). In 

1947 and 1949 Iranian archaeologists Ali Hakemi and Mahmoud Rad opened a number 

of graves in the cemetery area of the Lower Mound (Hakemi and Rad, 1950). These 

early excavations indicated the presence of Iron Age levels and also “Gray Ware” 

ceramic assemblages at Hasanlu (Danti and Cifarelli, 2013), which has long been 

associated with the earliest Iron Age in Iran (Dyson, 1983). The large size, deep 

stratigraphic sequence, geographic location, and several small surrounding 

archaeological sites made Hasanlu Tepe an excellent place to start a long-term 

archaeological project (Dyson, 1983) (Fig. 5.2). The Hasanlu project started in 1956, 

under the joint sponsorship of the University Of Pennsylvania Museum Of 

Archaeology and Anthropology, the Metropolitan Museum of Art, and the 

Archaeological Service of Iran. The research aimed to reconstruct the cultural and 

political developments in Hasanlu and the surrounding region from Neolithic times 

until the conquest of Persia by Alexander the Great in the 4th century BCE (Dyson, 

1983). Over 21 years, from 1956 until 1977, under the direction of Robert H. Dyson 

from the University of Pennsylvania, a series of excavations and surveys were 

conducted on the Hasanlu and other sites in the region such as Agrab, Pisdeli, Ziwiye, 

Dalma, Se Girdan, Hajji Firuz, and Dinkha Tepe (Winter, 1980). 
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 Fig. 5.2. Map of Hasanlu in relation to other archaeological sites (Dyson, 1989).  

 

The excavations revealed that the Hasanlu site was first occupied in the Neolithic 

period (Hasanlu X, 6th millennium BCE), and that occupation continued until the 

Ilkhanid period (Hasanlu I, 13th century CE). The site was inhabited continuously from 

the Bronze Age (Hasanlu VII, late 4th century BCE) until Iron Age II (Hasanlu IVB, 

800 BCE), which witnessed the complete and violent destruction of Hasanlu by fire 

(Table 5.1).  

 

                   Table 5.1. Hasanlu period chronology (Selinsky 2009) 

Periods Dates 

VII Late 4 cent. - C. 1600 BCE 

VI C. 1600- C. 1450 BCE 

V C. 1450- C. 1250 BCE 

IV C. 1250- c. 750 BCE 

III C. 750- C. 300 BCE 

II C. 300- C. 275 BCE 

I 13th and 14th Cent. CE 
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Plant remains excavated from the site showed that the conflagration probably 

happened in late summer (Dyson, 1965). It is believed that the violence and fire in the 

High Mound completely annihilated the people, women and children included, who 

remained in the buildings. It seems that most of the people were left in the place where 

they had been killed, in the streets and buildings that then collapsed on their bodies 

due to the fire (Figs 5.3 and 5.4). A large number of weapons of different types were 

found in many of the buildings in Hasanlu, probably in storage areas, indicating that 

those who stayed there in fact had weapons and horses at their disposal. However, 

since the bodies were scattered all over the city, it shows that they faced a swift and 

violent end.  

 

 

Fig. 5.3. Skeletons from the destruction level (High Mound). Source: 

https://www.penn.museum/collections/highlights/physicalanthro/the-lovers.php 

 

The information provided by the military artefacts of Period IVB is very limited and 

cannot be used to identify the attackers. However, when scholars matched the date that 

was obtained from radiocarbon evidence with artefacts that corresponded to historical 

https://www.penn.museum/collections/highlights/physicalanthro/the-lovers.php
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records, they suggested that Hasanlu was destroyed by the Uratian kings Ishpuini (825-

810) and/or his son Menua (810-781). Rock inscriptions found close to Ushnu and 

Tashtepe in the Urmia region, which show the celebration of the military campaigns 

of Ishpuini and Menua, also support this theory (Burney, 1994; Levine, 1987; 

Muscarella, 1989; Pecorella and Salvini, 1982; Zimansky, 1995). The fire that 

destroyed the site made Hasanlu V and IV, the Iron Age levels, the most widely 

investigated, due largely to the significant material culture recovered, especially the 

architectural remains and artefacts found in Hasanlu IVB. In addition, hundreds of 

grave goods were found in the Iron Age cemetery located to the north of the High 

Mound. The Hasanlu Gold Bowl, the most famous artefact discovered at the site 

(Porada, 1959; Winter, 1989), was discovered in the ruins of one of the burned 

buildings on the High Mound. Independently of these remarkable findings, what 

makes Hasanlu a very important archaeological site is its carefully controlled 

stratigraphic sequence throughout several periods, which produces the main basis of 

the regional chronology for north-western Iran. 

 

 

Fig. 5.4. Skeletons from the destruction level (High Mound). Source: 

https://www.penn.museum/collections/highlights/physicalanthro/the-lovers.php 
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5.2.1.1. Skeletal Material 

 

The Hasanlu skeletal material forms an excellent source for scholars working on the 

ancient Near East due to it being one of the largest Iranian skeletal collections 

available. Additionally, this collection is linked with a rich material culture obtained 

from the excavations over several decades. The total number of skeletal remains 

associated with Hasanlu available at the UPM is 263 individuals: 184 adults and 79 

subadults (as summarized in Table 5.2). Although these samples belong to individuals 

coming from different periods in the site’s history, the majority of them (n = 212) are 

related to periods V, IV, and IVB (i.e. Iron Age) in the site chronology (Tables 5.1 and 

5.3). Since the largest sample size available for analysis were obtained from the Iron 

Age period of the site, the main focus of this study also was set on the specimens from 

this period. Also what makes this timeframe particularly interesting is that it includes 

samples from both the cemetery and the destruction level.  

 

               Table 5.2. Composition by age category of collection (Selinsky 2009) 

Age category Numbers % of sample 

Foetal (preterm) 1 0.38 

Infant (birth-3 years) 24 9.13 

Child (4-11 years) 26 9.89 

Subadult (12-19 years) 28 10.65 

Young adult (20-34 years) 58 22.05 

Middle adult (35-49 years) 75 28.52 

Old adult (+50) 34 12.93 

Adult (limited data for aging) 17 6.46 

Total 263 100 
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    Table 5.3. The number of skeletons in different periods 

Periods Number of skeletons 

VII 3 

V, VI, VIB 212 

III 24 

II 21 

I 1 

Unknown 2 

Total 263 

 

The Hasanlu skeletal collection has previously been studied by several researchers. 

Rathbun completed both his master’s thesis (1966) and doctoral dissertation (1971) on 

nearly half of the Hasanlu skeletal remains (150 individuals) at the University of 

Kansas. His research focused mainly on the morphological affinities of the remains 

and, in 1972, the findings were published in a book titled A Study of the Physical 

Characteristics of the Ancient Inhabitants of Hasanlu, Iran. Rathbun also carried out 

some studies on the paleopathology of the Hasanlu skeletal remains (1980, 1981). In 

1997 a conference presentation about interpersonal violence at Hasanlu was given by 

McCarthy and Perlin. In 2005 Toebbe used the Hasanlu collection for her doctoral 

thesis, studying stress markers and the osteological paradox (Toebbe, 2005). In her 

analysis she used all of the Hasanlu skeletons to collect data but unintentionally 

included the remains from Dinkha Tepe in her analysis, which eventually resulted in 

difficulties in interpretation.  

 

Another master’s dissertation based on the Hasanlu collection was written by Dulik 

(2005). He used craniofacial measurements of the Hasanlu skeletons in biodistance 

analysis to recognize local inhabitants and invaders. This study was extended to extract 

ancient DNA from teeth from six Period IVB skeletons. This study was not very 

successful as there was no DNA in the analysed samples (Dulik et al., 2011). Monge 

and McCarthy (2011) also used cranial trauma to study the warfare and interpersonal 

violence among the Iron Age skeletal remains from Hasanlu. Their results show that 

while the pattern of ante-mortem and peri-mortem fractures for males is typical for 

warfare, for females it represents interpersonal violence against women in the Hasanlu 
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collection. The largest study of the Hasanlu collection is that by Page Selinsky (2009). 

She completed her doctoral dissertation on the paleodemography of the Hasanlu 

skeletal remains. Selinsky collected data on age, sex, and health markers from 195 

individuals, in order to address the issue of the age estimation of individuals using 

dental and skeletal markers, and also to explore patterns of mortality, health, and 

longevity in the Hasanlu collection.    

 

In 2013 the author of the present study travelled to the UPM to study the Hasanlu 

skeletal remains. Analysis confirmed that there were 212 individuals belonging to Iron 

Age levels. However, as there is currently no accurate method of determining sex in 

subadult remains using skeletal characteristics (Scheuer and Black, 2000), this study 

only included adult individuals. In the case of the Hasanlu cemetery, the burial 

environment appears to have been fairly conducive to bone preservation, as most of 

the remains are in good shape structurally. Some of the skeletons, however, were not 

well-preserved enough to be used for sex estimation, or did not have any teeth 

preserved. In addition, the state of some of the sets of dentition made it impossible to 

use them for this study. Some of the teeth, for example, were broken or the level of 

dental pathology was so high that observation of metric data was impossible. In 

addition, in the case of some of the mandibles and maxillae, teeth were glued firmly 

into their alveolar process, which caused various problems. First, due to the excess 

glue around the teeth, it was almost impossible to collect an accurate measurement. 

Second, the places where the teeth were glued were often wrong. For example, instead 

of a premolar, a canine would be glued into the alveolar process, or the tooth would be 

glued backwards. Due to these problems with the collections, data were only collected 

on 105 individuals. 

 

5.2.2. Dinkha Tepe: Archaeology and Skeletal Material 

 

In 1966 and 1968 Dinkha Tepe was excavated by teams from the University of 

Pennsylvania and the Metropolitan Museum of Art, New York. The excavation was 

conducted as part of the regional research connected with the Hasanlu project. As a 

result of these excavations Islamic remains (Dinkha I) were revealed and below this, 
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on the north side, there was a cemetery. In the Dinkha II and III burials (1350-800 

BCE), there was cultural material that paralleled the cultural material of Hasanlu 

periods IV and V, and Dinkha IV (1900-1300 BCE), which is equal to Hasanlu VI 

(Muscarella, 1968, 1974) (Table 5.4). Despite the prominent place that Dinkha Tepe 

occupies in some of the most important debates regarding Iranian archaeology, 

particularly those concerning the fundamental cultural transformation that marks the 

shift from ‘Bronze Age’ to ‘Iron Age’, the data obtained from the excavations has only 

been fragmentally analysed and there has been no publication of the bulk of the 

material. There are only a few publications related to the Dinkha material, and they 

have a very narrow focus in terms of both theme and amount of data presented. 

 

During the excavation 61 skeletons (52 adults and 9 subadults) were discovered from 

the Dinkha II and III periods. Of these 51 are present at the UPM (University of 

Penssylvania Museum of Archaeology and Anthropology). Some of the adult 

individuals had no teeth present, and also due to the aforementioned problems some 

of the skeletons were excluded. In total, 38 individuals from Dinkha Tepe were used 

for this study. 
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Table 5.4. Hasanlu and Dinkha Tepe period chronology. Danti and Cifarelli (2013, 30). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.    Methods 

 

5.3.1.   Age Estimation 

 

To estimate the sex of each individual and to identify and separate the adults from 

subadults, the present study collected multiple lines of data. In the case of immature 

individuals, estimation of age was mainly based on the stage of tooth formation and 

eruption (Buikstra and Ubelaker, 1994; Scheuer and Black, 2004). Although the 

sequence of formation and eruption differs from one population to another (Ubelaker, 

1999), this method is the most accurate for neonatal stages through to the eruption of 

wisdom teeth, which typically happens in the late teenage years or early twenties. The 

stages of epiphyseal formation and union were also assessed in each individual 

(Scheuer and Black, 2004). This technique is particularly useful when used alone or in 

combination with dental development. During the teens and early twenties, two of the 

Hasanlu Period 

 

I            Ilkhanid 

----------Break------------ 

II           Seleuco-Parthian 

IIIa        Iron IV-Achaemenid 

----------Break------------ 

IIIb        Iron III 

IIIc        Urartian Fortress 

-----------Break------------ 

IVa          Iron III 

IVb         Iron II (Dinkha II) 

IVc         Iron I (Dinkha III) 

V            Late Bronze (Dinkha III) 

VIa         Middle Bronze III (Dinkha III-IV) 

VIc         Middle Bronze I 

-----------Potential Break------------- 

VIIa       Early Bronze III 

VIIb       Early Bronze II 

-----------Potential Break------------- 

VIIc        Early Bronze I 
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most effective techniques for age estimation are the appearance of ossification centres 

– which can be applied from birth until the age of 15 – and the fusion of epiphyses.  

 

To estimate age in the adult sample, different methods related to both dental and 

skeletal features were employed in this study. Dental wear was primarily used for age 

assessment in the Hasanlu sample. A combination of the Miles method (2001) and 

wear scorevalues was used to evaluate the dental wear (Buikstra and Ubelaker, 1994). 

This is arguably considered the most effective available technique for the analysis of 

archaeological populations (Brothwell, 1989; Lovejoy, 1985; Mays, 1998; Molleson 

and Cohen, 1990; Walker et al., 1991) because the rates of dental wear are estimated 

within the skeletal population according to subadult and adult dentitions. The 

application of the Miles method to archaeological skeletal materials has proved 

successful (Kieser et al., 1983; Mays, 1998), including in the Tepe Hissar collection 

from Iran (Nowell, 1978). To determine skeletal age, traditional means such as 

changes in the pubic symphyseal face (Brooks and Suchey, 1990), and alterations to 

the auricular area (Buckberry and Chamberlain, 2002) were used. When these methods 

were not available, the closure of cranial sutures (Meindl and Lovejoy, 1985) was used 

to place individuals in an age category. However, the reliability of this method is still 

debated due to its extreme variability and the extent to which genetic and/or 

environmental factors affect the rate and order of closure (Key et al., 1994). In 

addition, the standard methods established for scoring cranial suture closure are often 

criticized for subjectivity and a lack of quantitative analysis (Key et al., 1994; 

Hershkovitz et al., 1997).  

 

5.3.2.    Sex Estimation  

 

5.3.2.1. Skeletal Morphology 

 

Sex estimation in this study was only carried out on adult specimens, as there are as 

yet no reliable means for sex estimation using skeletal features in subadult individuals 

(Scheuer and Black, 2000). The state of preservation is one of the important factors 

determining the accuracy of sex assessment in adults, with the pelvis and cranium 
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being the elements with the highest level of diagnostic accuracy.  

 

In this study, the straightforward visual technique of Phenice (1969) was used to 

estimate sex using the pelvis. This technique is based on the distinctions of the os 

pubis. Phenice’s method identifies differences in the subpubic concavity, the ventral 

arc, and the medial aspect of the ischiopubic ramus. This study also uses the sciatic 

notch as a means for sex estimation due to its high level of accuracy in sex assessment 

(Pretorius et al., 2006; Walker, 2005).  

 

Walker’s modified scoring system, presented in 2008, was used in this study to assess 

sex using cranial traits (mastoid process, nuchal crest, glabella/supraorbital area, 

supraorbital margin, shape of orbit, and mental eminence). Mandible features were 

also used as a means to independently verify the sex estimates. Unfortunately, due to 

time limitations on data collection, the author could not collect postcranial 

measurements for sex estimation. However, in addition to morphological features of 

the skull and pelvis, Selinsky (2009) uses postcranial measurements for sex estimation, 

including mastoid length, mandible measurements, pelvis and long bone 

measurements. The sex estimation results of the present study were cross-checked for 

each specimen separately with the data presented by Selinsky (2009).  

 

5.3.2.2. Dental Measurements 

 

Sex estimation using dental measurements was performed using three different 

methods: 

1) 2D cervical mesiodistal and buccolingual measurements  

2) 3D cervical mesiodistal and buccolingual measurements 

3) Tooth root volume measurements. 

 

The 2D cervical measurements were taken using the Paleo-Tech Hillson-Fitzgerald 

digital calliper, and 3D cervical and volume measurements were taken using CT scan 

images and AMIRA software. For all three sets of measurements, the Hasanlu and 

Dinkha Tepe samples were pooled together in order to increase the sample size.  
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5.3.2.2.1. 2D Measurements 

 

Dental measurements of the cemento-enamel junction include the mesiodistal and 

buccolingual diameters followed the method outlined by Hillson et al. (2005). 

According to this method, mesiodistal cervical diameter was taken as the “distance 

between the most occlusal points of the cemento-enamel junction curve on the mesial 

and distal sides” (Hillson et al., 2005, p. 418). Buccolingual cervical diameter was 

taken as the “maximum measurement at the cemento-enamel junction from 

labial/buccal to lingual/palatal (Hillson et al., 2005, p. 418) (Fig. 5.5).   

 

 

 

Fig. 5.5. Mesiodistal and buccolingual cervical canine measurements. Source: Hassett (2011) 

 

Cervical buccolingual and mesiodistal measurements were taken on loose teeth as well 

as on teeth intact in the jaw. Measurements were taken for the entire dental arcade, 

both right and left sides. However, the right-side measurements were used for sex 

estimation due to their larger availability. In the case of a missing value from the right 

side, the left antimere was substituted. To avoid the possibility of incorrect 

measurements the samples with the most extensive tooth wear (grade 7 and 8) (Smith 

1984), caries, heavy calculus deposits, and hypoplastic defects along the cemento-

enamel junction were excluded. The Hillson-Fitzgerald calliper was used to take the 

dental measurements: a modified Mitutoyo digital calliper, calibrated to 0.01mm, 

fitted with needlepoints for CEJ measurements of in situ teeth (Fig. 5.6).  
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Fig. 5.6. The Hillson-Fitzgerald calliper for taking cervical dental measurements. Source: 

Hillson et al., (2005) 

 

5.3.2.2.2. 3D Cervical Measurements 

 

3D cervical measurements were also used for sex estimation. CT scans of maxillae and 

mandibles from the Hasanlu and Dinkha Tepe collections were used to create 3D teeth 

models. The skulls were scanned at the Hospital of the University of Pennsylvania 

using a Siemens Somatom sensation 64-slice Computed Tomography machine. Data 

were collected using a slice thickness of 0.5 mm and a matrix of 512 × 512 pixels. All 

data were saved in the Digital Imaging and Communications in Medicine (DICOM) 

format. The CT scans were obtained through the Open Research Scan Archive 

(ORSA). In this study a total of 457 teeth using 51 CT scans (30 males, 21 females) 

were used for 3D analysis. The number is considerably smaller than the original 

sample collection used for 2D analysis; this is due to ORSA’s inability to provide CT 

scan images of more samples.  

 

5.3.2.2.2.1. Data Acquisition  

 

5.3.2.2.2.1.1. Segmentation 

 

As mentioned in the previous chapter, computed tomography is a non-invasive 

technique that allows for an accurate and detailed visualization of morphological 

features without causing any tooth destruction. Using this technique, high resolution 
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3D radiographs are produced in the form of a stack of DICOM image slices. In this 

study, the transformation of stacked image data into 3D surface models was conducted 

using the software application AMIRA 6.0.1 for the process of manual image 

segmentation, a virtual platform used to process medical imaging data. This software 

allows for the visualization, manipulation, and analysis of biomedical data obtained 

from all types and sources.  

 

The task of partitioning the image data into contiguous regions, representing individual 

anatomical structures according to a certain set of criteria, is referred to as the 

segmentation of medical images. Uploading a series of images into the AMIRA 

program is the first stage of manual segmentation. Each CT slice is then examined so 

that the regions of the slice that represent the anatomical structure required for analysis 

are selected. AMIRA software provides the user with various tools to select these 

regions; in the current study, the maximum and minimum threshold voxel grayscale 

values are used as criteria for the segmentation of the teeth. The selection of grayscale 

values enables the user to select any voxels that fall between the two threshold values. 

Different voxel grey values represent different densities of sensed data. In a CT scan, 

the high density of teeth appears as a high voxel value, which is represented as white. 

The alveolar bone, which has comparatively lower intensity, appears grey and 

therefore has a lesser voxel value (Fig. 5.7). Since the crown is covered with enamel 

and the root is covered with cementum, the density of teeth largely differs from crown 

to apex (Fig. 5.8). This requires the researcher to define more than one threshold level 

for tooth segmentation. In this study the threshold level was adjusted two times: first 

to segment the tooth from the jaw and second to segment the crown from the root. The 

latter segmentation helps the user to detect the CEJ line more accurately when placing 

the cervical measurement landmarks: this is due to the difficulty of identifying the CEJ 

line on 3D models, compared to identifying it using actual teeth. 
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Fig. 5.7. The presentation of teeth and the alveolar bone in AMIRA from different views.  

 

Fig. 5.8. The presentation of tooth crown and root with different densities in AMIRA from 

different views.  

 

According to Spoor et al. (1993), since in CT images the information is represented as 

pixels – due to CT scanners being digital image capture methods – the perfect 
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representation of the smooth, curved lines of the objects is impossible, and they appear 

stepped instead. In addition, the density information in CT scanners is shown in the 

form of a range of grey values that are greater than the human eye can discriminate. 

Although the human eye sees the edge of the object as white, it is in fact several shades 

of grey (Spoor et al., 1993). The restricted resolution of digital images, therefore, 

makes the transition area between materials in CT scans a gradual one rather than a 

true distinctive line (Spoor et al., 1993). Nevertheless, according to Spoor et al. (1993), 

the true edge of an object in fact lays halfway between the CT number levels or grey 

values. This level, or grey value, is what is known as the Half Maximum Height Value 

(HMHV). In the current study, the thresholds used to segment the teeth from the jaws 

were calculated using the half maximum height protocol of Spoor et al. (1993) for each 

skull. The Image J program was used to calculate the HMHV, by calculating the 

average grey value of every third image of the CT scans. The calculation yielded a 

threshold level of 1,500. Using this threshold, the tooth anatomy was shown with 

minimal interference from the bone surrounding it and the neighbouring structures 

(Fig. 5.9). To segment the crown from the root, on the other hand, for each tooth a 

specific optimal threshold value was visually set to the level at which the crown was 

clearly seen with minimal interference from the root structure (Fig. 5.9). As a result of 

visually adjusting the threshold parameters, different threshold levels were obtained 

for different teeth in the same DICOM data sets and between different data sets. The 

segmentation was also performed in the axial view from crown to apex. Crown and 

root of the same tooth were colour coded to facilitate differentiation (Figs 5.10, 5.11). 

 

Using the threshold values mentioned above, the ‘magic wand’ tool in AMIRA was 

used to go through cross-sectional slices of each tooth and to select the appropriate 

tooth portion. The magic wand selects contiguous pixels of the grey value range as 

specified by the user. The same process was applied to all the slices with dental 

structure, until all the slices were selected. The next stage was to use ‘surface gen’ to 

merge the selected parts together so that a 3D surface model could be created.  
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Fig. 5.9. A threshold of 1,500 was used to segment the tooth from the jaw (top image). The 

threshold was visually set to segment the crown from the root (bottom image). Segmentation 

was mainly processed in the axial view, from crown to apex. 

 

5.3.2.2.2.1.2. Measurements 

 

Cervical mesiodistal and buccolingual measurements, following Hillson et al.’s (2005) 

method, were taken of each 3-D model. These measurements were taken from the in 

situ and right maxillary and mandibular teeth, because the number of CT scans of the 

right teeth was considerably larger than those of the left teeth. Similar to the 2D 

measurements, the samples with caries, heavy calculus deposits, and hypoplastic 

defects along the cemento-enamel junction were excluded, in order to avoid the 

possibility of incorrect measurements.  

 

3D measurement tools in AMIRA were used to take dental measurements. These tools 

are calibrated in such a way that they express length measurements as millimetres, 

with an accuracy of 0.01mm. This study used the 3D measurement tool instead of the 

2D measurement tool because in the former the measurement is taken from points 

directly on the surface of the 3D models, ensuring that all of the measurements 
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precisely fit the surface of the tooth. The 3D teeth models were used to measure both 

the cervical measurements and the tooth root volumes (Fig. 5.10). 

 

5.3.2.2.3. 2D/3D MD Cervical Measurements 

 

As mentioned in chapter 3, using Hillson et al.’s (2005) method, the cervical MD 

measurement could differ when taken from the buccal side or lingual side. To work 

out the degree of difference, the cervical MD measurements for maxillary and 

mandibular teeth were collected once from the buccal side and once from the lingual 

side, and the results were compared. The teeth used for this comparison were either 

loose teeth or the in situ teeth in fragmented jaws that could be rotated and therefore 

measured from the two positions (see chapter 8).  

 

5.3.2.2.4. 3D Volume Measurements 

 

In addition to 2D and 3D cervical measurements, a new metric parameter was used for 

sex estimation. A total of 480 teeth using 51 CT scans from Hasanlu and Dinkha Tepe 

skeletons (31 males, 20 females) were used to measure the volume of the tooth root 

for sex estimation. Similar to the 3D cervical measurements, the HMHV protocol of 

Spoor et al. (1993) was used to segment the teeth from the jaws. A threshold was then 

visually set to segment the crown from the root. Finally, the crown and the root were 

given different colours to facilitate their differentiation (Fig. 5.11). No smoothing 

functions were applied to the 3D tooth structure. Liu et al. (2010) report that use of the 

smoothing function caused a reduction of the tooth root volume measurement by about 

3-12%. Once segmentation was complete, the software automatically computed the 

volume of the root.  

 

In order to calculate the tooth root volume a measurement was taken from the cemento-

enamel junction (CEJ) to the apex of the tooth, including the pulp chamber and canals. 

Root volume measurements were taken from the in situ and right maxillary and 

mandibular teeth due to their availability. To avoid the possibility of incorrect 
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measurements, the samples with root resorption, incomplete root formation, a broken 

root, root caries, or caries along the CEJ, were excluded. 

 

 

 

Fig. 5.10. Cervical BL (left) and MD (right) measurements on UI1 and UM1. Crowns and 

roots were colour-coded to facilitate differentiation. 
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Fig. 5.11. 3D tooth volume of UI1. A, buccal, B, lingual, C, distal, D, mesial. The crown was 

segmented from the root and the volume was taken from the CEJ to the apex. Crown and root 

were colour coded to facilitate differentiation. 

 

5.3.3. Statistical Analysis 

 

All the results for each set of measurements were analysed using the SPSS 21 software 

package for complex statistical analysis. Discriminant function analysis was used to 

evaluate the measurements and determine the most effective discriminators. The level 

of sexual dimorphism was also calculated, and the results were compared between the 

three groups of data. Intra- and inter-observer error was also calculated in order to 
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assess the reliability of the measurements. The statistical methods used in this study 

were separately applied to each group of measurements. 

 

5.3.3.1. Intra- and Inter-Observer Error  

 

To check the reliability of the methods used for each set of data, it was important to 

determine the intra- and inter-observer error associated with the measurements. To 

assess the intra-observer error of measurements, data were collected twice on a random 

subset of 50 individuals for 2D cervical measurements, and 35 individuals for both 3D 

cervical and root volume measurements. All measurements were collected by the 

author with an accuracy of two decimal places on two separate occasions at least one 

week apart. A second trained observer with a PhD in osteoarchaeology repeated the 

same 2D cervical, 3D cervical, and RV measurements on a random subset of 30 

individuals to enable determination of inter-observer reliability. Technical error of 

measurements (TEM), relative technical error of measurements (rTEM), and the 

coefficient of reliability R (Ulijaszek and Kerr, 1999) were used to determine the 

differences between measurements. 

 

By using the three error estimation methods, most of the information necessary for the 

determination of whether a series of anthropometric measurements can be considered 

accurate can be obtained (Ulijaszek and Kerr, 1999; Harris and Smith, 2009). 

 

One of the most frequently used estimates of precision is the TEM (Ulijaszek and Kerr, 

1999; Ward and Jamison, 1991). Ward and Jamison (1991, p.157) state that TEM 

“provides a standard deviation-like measure of the magnitude of error and it is in the 

original units of measurement.” The estimation of both intra- and inter-observer 

precision can also be carried out using TEM. When there are two measurements 

involved, the formula for TEM is:  

 

                                                                                                                                                                  

Equation 1 
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In this equation, D shows the difference between the first and second measurement, N 

shows the number of teeth measured. The smaller the TEM values, the more accurate 

the measurements are. TEM keeps the same unit of measurement and has a direct 

relation to measurement size. The TEM of a large mean value, for example, is also 

large, which makes assessment of the comparison of measurements of different sizes 

impossible (Ulijaszek and Kerr, 1999). In order to surmount this problem, the TEM is 

converted to relative TEM (%TEM), which is the error presented in the form of a 

percentage, which corresponds to the total average of the analysed variable (see 

Equation 2). The authors argue that this equation is simple to calculate and has no 

units, as well as allowing for direct comparisons of all types of anthropometric 

measure. 

 

                                                                 Equation 2 

 

Using the coefficient of reliability (R) is another way to obtain the comparability of 

anthropometric measurement error. The range in this method is from 0, representing 

‘not reliable’, to 1, expressing complete reliability, and can be calculated using the 

equation:  

                                                                                     Equation 3 

 

This coefficient “reveals the proportion of between-subject variance in a measured 

population which is free from measurement error” (Ulijaszek and Kerr, 1999, p.168). 

While no values have been recommended for R, Ulijaszek and Kerr (1999) suggest 

using a cut of the value of 0.95 (i.e. a human measurement error of up to 5%).  

 

5.3.3.2. Normality and Homogeneity of Variances Tests 

 

In statistical analysis, all parametric tests (e.g. t-test, one-way ANOVA) require the 

normality and homogeneity of variances of the data to be carried out. Checking the 

assumption before doing any relevant statistical procedures was therefore necessary. 

http://www.statisticssolutions.com/directory-of-statistical-analyses/
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In this study, two methods were used for the test of normality for all three sets of data: 

the Kolmogorov-Smirnov and Shapiro-Wilk tests. In these tests, the scores in the 

sample are compared to a normally distributed set of scores that have the same mean 

and standard deviation; the null hypothesis assumes that the sampling distribution is 

normal. If the p-value is less than or equal to 0.05, the hypothesis of normality is 

rejected by the tests. P-value “is the probability, given that the null hypothesis is true, 

of obtaining data as extreme or more extreme than that observed” (Peacock and 

Peacock, 2011. P.248). 0.05 (or 5%) is usually used as a cut-off value. Succeeding the 

normality test allows the user to conclude with 95% confidence that the data fits the 

normal distribution.  

 

Sample size is one of the factors influencing normality tests (Ahad et al., 2011; Razali 

and Wah, 2011; Ghasemi and Zahediasl 2012). Ahad et al. (2011) performed a study 

aimed at identifying the sensitivity of rejecting the normality tests on non-normal data 

with a small sample size. Their study showed that the Shapiro-Wilk was the most 

powerful normality test, rejecting the null hypothesis of normality at the smallest 

sample size (n > 39). A similar study by Razali and Wah (2011) on a very small sample 

size (n ≤ 10) yielded the same result. Since the sample size for 3D measurements in 

this study is relatively small (n < 50), in order to increase the accuracy of the normality 

test, the Shapiro-Wilk test was added to the study. 

 

Levene’s test was used to assess variance homogeneity in all sets of data. The null 

hypothesis is that population variances are equal. Similar to normality tests, if the value 

of Levene’s test is less than the 0.05, the null hypothesis is rejected.  

 

5.3.3.3. Student t-test 

 

The student t-test is used to determine whether the means of two groups are statistically 

different from each other. There are two types of t-test: paired t-test and independent 

t-test. The paired t-test compares the means between two groups which are related in 

some way, while the independent t-test compares the means between two groups which 

are not related in any way. A p-value of less than 0.05 shows that the difference 
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between two groups is statistically significant. A t-test works in essentially the same 

way as the one-way ANOVA (which will be explained shortly) and is considered one 

of its especial cases.  

 

In this study, the bilateral asymmetry of right- and left-side teeth in all sets of data was 

tested using a paired t-test. An independent sample t-test was also carried out to 

determine if there were any statistically significant differences between the Hasanlu 

and Dinkha Tepe collections, and also to compare 2D and 3D cervical measurements.  

  

5.3.3.4. Outlier Detection  

 

Data analyses such as ANOVA and discriminant function analysis might be negatively 

affected by outliers. An outlier may be caused either by variability in the measurement 

or might be an indication of experimental error. In a data set, an observation that 

‘appears’ to be inconsistent with other observations is referred to as an outlier. The 

probability rate of an outlier is very low, and is derived from the same statistical 

distribution as the other observations in the data set. The presence of outliers can be a 

problem as it can significantly distort classical analysis of data and the inferences 

drawn from that analysis. To obtain a coherent analysis, therefore, outlier detection 

was performed separately for both the Hasanlu and Dinkha Tepe collections and for 

each set of measurements.  

 

In addition, since Hasanlu is a case of violent conflict, there is the possibility that the 

bodies of the invaders are mixed with those of the locals; outlier detection was 

therefore used to see if there were any individuals with tooth diameters that fell outside 

the overall pattern of the rest of the data. The importance of this lies in the fact that the 

odontometric standards for sex estimation are population specific and therefore cannot 

be used for diverse populations (Vodanovic´ et al., 2007).  

 

The present study used two different methods to detect outliers, both using the median 

as the indicator instead of the mean. The reason for this is that three problems can 

occur when using the mean as the central tendency indicator: 1) it supposes that the 
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distribution of the data, including the outliers, is normal; 2) the mean and standard 

deviation are highly affected by outliers (Miller, 1991); 3) Cousineau and Chartier 

(2010) argue that it is very unlikely that this method detects outliers in the case of 

small samples. Similar to the mean, on the other hand, the median is a measure of 

central tendency but has an advantage over the mean as it is very insensitive to the 

presence of outliers (Leys et al., 2013). 

 

The ‘breakdown point’ is one of the indicators of this insensitivity (see for example 

Donoho and Huber, 1983). “The estimator’s breakdown point is the maximum 

proportion of observations that can be contaminated (i.e., set to infinity) without 

forcing the estimator to result in a false value (infinite or null in the case of an estimator 

of scale)” (Leys et al. 2013, p.765). A single observation with an infinite value, for 

example, causes the mean of all other observations to be infinite as well, and 

consequently makes the mean’s breakdown point 0. The median value, by contrast, 

remains unaffected. Only when more than 50% of observations are infinite does the 

median become absurd. A breakdown point of 0.5 makes the median the location 

estimator with the highest breakdown point. The exact same thing applies to the 

Median Absolute Deviation (MAD), an estimator of scale. In addition, the sample size 

does not in any way affect the MAD (Leys et al., 2013). Based on these two properties, 

Huber (1981, p. 107) describes the MAD as the “single most useful ancillary estimate 

of scale”. For example, compared to the classical interquartile range – which was also 

used in the current study (to be explained shortly) – it is more robust, having a 

breakdown point of only 25% (Leys et al., 2013). 

 

The present study uses Tukey’s interquartile range (IQR) (1977) and Median Absolute 

Deviation (MAD) (Leys et al., 2013) to detect outliers. IQR is a measure of statistical 

dispersion which uses the median and lower and upper quartiles (25th and 75th 

percentiles). The interquartile range, or IQ, is the difference between the lower quartile 

(Q1) and the upper quartile (Q3), namely (Q3 – Q1). In Tukey’s (1977) method, 

potential outliers are identified as those data beyond the upper quartile + 1.5 – IQR 

and lower quartile -1.5 – IQR. Leys et al. (2013) described a robust and easy to conduct 

method of detecting outliers using the Median Absolute Deviation. The procedure for 
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calculating the MAD is 1) computing the median, 2) subtracting the obtained value 

from all observations in the statistical series, 3) computing the median of the resulting 

new variables, and 4) multiplying the obtained value by 1.4826. The authors strongly 

recommended the median plus or minus 2.5 times the MAD method for outlier 

detection. Both methods were used separately for each tooth and each set of 

measurements to detect outlaying values in the data sets.  

 

5.3.3.5. One-way ANOVA 

 

When determining whether any statistically important differences exist between the 

means of two or more independent groups, the one-way analysis of variance 

(ANOVA) is used. Comparing only two groups, a one-way ANOVA provides the same 

results as an independent t-test. The null hypothesis in this technique is that all 

population means are equal. In this study, a one-way ANOVA was used to compare 

the mean differences between males and females. 

 

5.3.3.6. Discriminant Function Analysis 

 

Discriminant function classification was carried out to determine the relationship 

between osteologically estimated sex and dental measurements. One of the most 

frequently used techniques to develop sex assessment formulae is the discriminant 

function analysis, which is based on using one or more measurements from the 

skeleton. Discriminant function analysis is a statistical technique that researchers use 

in order to be able to investigate the relations among two or more groups by using any 

number of variables simultaneously. An analysis in which a single measurement is 

independently used for sex assessment is termed a univariate discriminant function 

analysis. When the researcher uses a combination of measurements, however, the 

method is referred to as multivariate discriminant function analysis. This method can 

either be direct or stepwise. In direct analysis, all variables are entered into the analysis 

simultaneously, while in stepwise analysis the variables that are not statistically 

significant are removed from the analysis. Stepwise discriminant function analysis is 

used to determine which variables best discriminate between males and females. In 
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this study, separate discriminant analysis was conducted for the 2D and 3D cervical 

measurements as well as the tooth root volume measurements, separately by tooth 

class (incisor, canine, premolar, and molar) and position (maxillary and mandibular). 

Many studies have shown that canines are the most sexually dimorphic teeth, therefore 

canines were added to each function to indicate whether classification success would 

increase. In addition, in order to increase the applicability of the technique where 

dentition is not well preserved, the analysis was also conducted for each tooth and 

measurement separately. 2D cervical measurements were also combined with 3D root 

volume measurements to see whether classification accuracy was improved. In the 

present study, the discriminant function analysis was carried out for samples > 20 

individuals that had relatively equal male/female size groups. 

 

A leave-one-out classification procedure was also used to demonstrate the accuracy 

rate of the original sample and the sample created by cross-validation, a technique that 

is used to assess the performance of a predictive model. One of the most common 

forms of cross-validation, leave-one-out is a method in which “the model is repeatedly 

refit leaving out a single observation and then used to derive a prediction for the left-

out observation” (Lopez-Yanez et al. 2013, p.22). The results of cross-validation are 

usually lower than the results obtained in the original classification, but are more 

reliable.    

 

5.3.3.7. Posterior Probabilities  

 

In this study, the posterior probabilities of each individual for 2D cervical, 3D cervical, 

and root volume measurements were calculated, “since they reflect the affinity of each 

case to be reassigned to the original group according to the values of the discriminant 

score” (Kranioti and Apostol, 2014, p. 358). The posterior probability refers to the 

likelihood that an unknown case belongs to a particular group. This probability is 

calculated from the Mahalanobis’ distances, measuring the distance to the centre or 

centroid of each group. The evaluation of how likely it is that the unknown case 

belongs to a group based on the average variability within all groups is referred to as 

the typicality probability (Mardia et al., 2000). For example, those discriminant scores 
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that are approximately zero fall in the zone that indicates overlap between the two 

groups, which makes sex estimation uncertain. Using posterior probabilities, the 

researchers are able to calculate how probable it is for a case to belong to the male or 

the female group. In the current study, a discriminant subprogram of SPSS was used 

to produce the posterior probability values for each function, and the data was plotted 

using the Excel programme for Windows.  

 

5.3.3.8. The Pearson Correlation Coefficient 

 

In multivariate analysis, when two predictor variables correlate or associate with one 

another, some common underlying factors or traits are shared among them that lead to 

some equality in the way that they vary on the scores in the data set. As a result of that 

underlying trait, the two variables co-vary with each other. This, in other words, causes 

similar variations in scores measured as variance. As mentioned earlier, the present 

study used the combination of 2D cervical measurements and tooth root volumes for 

sex estimation. However, according to some researchers there is a positive and 

systematic correlation between root length and crown size for both mesiodistal and 

buccolingual crown diameters (Garn et al., 1978; Harris and Couch, 2008). They have 

also determined that the correlations of mesiodistal crown size with root length are 

higher than its correlations with buccolingual crown size (Garn et al., 1978). Harris 

and Couch (2008) also reported a strong positive correlation between different crown 

measurements (length, width, and height) and root length. Therefore, Pearson’s 

correlation was performed separately for each tooth measurement, in order to 

determine whether there was a statistically significant relationship between 2D 

cervical measurements and root volume measurements. When measuring the statistical 

relationship or association that exists between two continuous variables, Pearson’s 

correlation coefficient is used. It is a test statistics that is considered to be the best 

method for the measurement of the association between variables, due to it being based 

on the method of covariance (Hunter and Schmidt, 2004). The range of values in the 

Pearson correlation coefficient (r) is from +1 to -1. When there is no correlation 

between the two variables, the value is indicated as 0. When there is a positive 

correlation, the value is greater than 0; that is, an increase in the value of one variable 
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results in an increase in the other variable. Where there is a negative correlation, the 

value is less than 0; that is, a decrease in the value of one variable results in a decrease 

in the value of the other variable. Pearson correlation method was also used to provide 

an indication of the degree of association of 2D and 3D cervical measurements and 

whether the values were significantly different from zero at the p < 0.05 level.   

 

The relationship between 2D cervical and RV measurements, and between 2D and 3D 

cervical measurements, was also examined using least squares linear regression: y = 

ax + b, where y = dependent variable, x = independent variable, a = a constant which 

defines the intercept on the Y axis, and b = a constant which defines the slope of the 

line. Regression analysis is frequently “used to predict the value of one variable from 

the value of another variable” (Reckase, 2009, p.43). The key output of a regression 

analysis is R squared (R2), which determines how well a regression line fits the actual 

data. R2 values between 0% and 100% show the extent to which the dependent variable 

can be predicted from the independent variable (Albright and Winston, 2014), with 

0% showing that the dependent variables cannot be predicted from the independent 

variables (no linear relationship), and 100% showing that the dependent variables can 

be predicted with no error from the independent variables (perfect linear relationship). 

R2 values between 0% and 100% show the extent to which the dependent variable can 

be predicted from the independent variable (Albright and Winston, 2014). For 

example, an R2 value of 0.84 shows that 84% of the variation in the y variable can be 

explained by the x variable.   

 

5.3.3.9. Bootstrapping  

 

The present study uses bootstrapping to account for possible biases due to small 

sample size, particularly in the 3D measurements. Bootstrapping is a statistical 

“technique for estimating the variance and the bias of an estimator by repeatedly 

drawing random samples with replacement from the observations at hand. One applies 

the estimator to each sample drawn, thus obtaining a set of estimates” (Last, 1995, p. 

18). The main assumption on which bootstrapping is based is that sample distribution 

is a good estimate of population distribution. In other words, the sample accurately 
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reflects the entire population. Bootstrap computes a confidence interval which 

provides an estimate for the population mean. A confidence interval is a range of 

values computed from the sample observations that are considered, with a particular 

confidence level, to include the true parameter value. For example, when there is a 

95% confidence interval, it means that when the estimate process is repeated over and 

over again, it is expected that 95% of the computed intervals will include the true 

parameter value. In the biological sciences bootstrapping is regularly used to estimate 

classification error rates and is comparable to cross-validation, because they both 

decrease classification bias and error classification variability (Fox et al., 1996; 

McBride et al., 2001; Ponsting et al., 2001; Plochocki, 2011). In the present study, the 

bootstrapping was used in cases with sample size < 60. 

 

5.3.3.10. Percentage of Sexual Dimorphism 

 

The present study uses the percentage of sexual dimorphism as an indicator to describe 

the differences between males and females. To calculate this index, Garn et al.’s 

formula (1967) [(male mean _ female mean)/female mean] _ 100) was used. The 

percentage of sexual dimorphism shows the difference between male and female mean 

values. When there is a positive value, it means larger male tooth dimension, and when 

there is a negative value, it means larger female tooth dimension. When the value is 

approximately zero, it indicates that the degree of sexual dimorphism will be lower. 

The statistical results, together with age and morphological sex estimation results, will 

be discussed in detail in the next chapter. 
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CHAPTER 6  RESULTS 

 

6.1. Introduction 

 

The present study aims to determine the reliability of dental measurements in sex 

estimation in Hasanlu and Dinkha Tepe archaeological samples. To achieve this goal 

the sex of the skeletons was first estimated using morphological features of the skull 

and pelvis, and then these data were compared with the results obtained from 2D and 

3D cervical and RV measurements. This chapter presents the results produced from 

different sexing and ageing methods used on the Hasanlu and Dinkha Tepe collections, 

and also the results of the statistical analysis which was used for sex estimation using 

dental measurements.  

 

6.2. Age Estimation  

 

In total 263 skeletons from the Hasanlu Iron Age levels (n = 212) and Dinkha Tepe (n 

= 51) collections were studied. Of these, 26 individuals did not have any teeth 

preserved and were thus excluded from the analysis, therefore age estimation was 

conducted on 237 individuals from the Hasanlu and Dinkha Tepe collections. In total, 

64 individuals from Hasanlu and 5 individuals from Dinkha Tepe were classified as 

subadults using tooth formation and eruption (Buikstra and Ubelaker, 1994; Scheuer 

and Black, 2004) and epiphyseal formation and union (Scheuer and Black, 2004). 

Since sex estimation was conducted only on adult individuals, the subadults were 

excluded from the analysis. Table 6.1 shows the distribution of subadults by age 

category developed by Buikstra and Ubelaker (1994).   

 

Table 6.1. Age distribution of subadult skeletons 

Age 
N 

Hasanlu Dinkha Tepe 

Fetus (before birth) 1 0 

Infant (0-3 years) 16 2 

Child (3-12 years) 24 1 

Adolescent (12-20 years) 23 2 

Total 64 5 
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Using multiple methods based on dental wear (Buikstra and Ubelaker, 1994; Miles, 

2001) and morphological changes in the skull (Meindl and Lovejoy, 1985) and pelvis 

(Brooks and Suchey, 1990; Buckberry and Chamberlain, 2002) the age of the adult 

individuals was estimated. The age distribution of the 168 remaining individuals from 

the Hasanlu (n = 128) and Dinkha Tepe (n = 40) collections is presented in Table 6.2. 

The most frequently used method was dental wear (n = 149), as well as cranial sutures 

(n = 84), and pelvic features (n = 78). The majority of the individuals were grouped 

into the middle age category (35-50 years), making up 46% of the sample, followed 

by young adults and old adults, 32% and 19% respectively. Five individuals were also 

added to the category of general adult, due to them being clearly adult despite the 

inability to be reliably recognized as young, middle or old adult (Table 6.2).  

 

Table 6.2. Age distribution of adult skeletons 

Age 
N 

Hasanlu Dinkha Tepe 

Young adult (20-35 years) 45 10 

Middle adults (35-50 years) 57 21 

Old adults (50+ years) 23 7 

General adult  3 2 

Total 128 40 

 
 

6.3. Morphological Sex Estimation  

 

In total, 168 adult individuals from the Hasanlu (n = 128) and Dinkha Tepe (n = 40) 

collections were used for sex estimation. A number of images showing the level of 

tooth preservation are presented in Appendix B.  

 

Multiple methods were employed for estimating sex of Hasanlu and Dinkhah Tepe 

specimens. The most reliable indicators were pelvic (Phenice, 1969; Presorius et al., 

2006) followed by cranial (Walker, 2005, 2008) arid then metric traits of long bones 

which has been conducted by Selinsky (2009). 
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Sexing in the Hasanlu and Dinkha Tepe samples was relatively successful. Individuals 

were classified as male, probable male, female, probable female, indeterminate and 

unobservable. Crania and mandibles were present nearly twice as often as pelves. 

Pelvic morphological features were used in the sexing of 76 individuals, cranial 

features in 117 individuals and mandibular features in 104 individuals. 

 

In general, there was an excellent agreement between methods. If there were 

differences in sexing, it was a one-step change (e.g. from female to indeterminate). In 

total, sex was estimated for 143 individuals in the Hasanlu (n=105) and Dinkha Tepe 

(n=38) samples. To increase the sample size, the two categories within each sex were 

combined. In addition, those individuals which were grouped as unobservable were 

also combined with indeterminate individuals (Table 6.3). Table 6.3 presents the 

distribution of final sex estimates for each collection.  

 
As mentioned in the previous chapter, the sex estimation results of this study were 

compared with Selinsky’s (2009) results for each individual separately. In general, 

there was great agreement between the two studies. There were differences in sexing 

in only five individuals, which the present study determined as indeterminate, while 

Selinsky classified them as males or females. However, to avoid bias in the analysis 

these individuals were excluded from the data.  

 

As shown in Tables 6.3, and 6.2, the greatest number of individuals in both the Hasanlu 

and Dinkha Tepe collections are males aged between 35-50 years old. Most of the 

females were also grouped in the middle adult age category. The distribution of adult 

individuals by sex and age is shown in Figure 6.1.  

 

Table 6.3. Sex distribution of adult skeletons   

Sex 
N 

Hasanlu Dinkha Tepe 

Male 67 23 

Female 38 15 

Indeterminate 18 5 

Total 123 43 
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Fig. 6.1. The distribution of adult individuals by sex and age. 

 

2D cervical measurements were collected from all 143 adults from the Hasanlu and 

Dinkha Tepe collections. However, due to ORSA’s inability to provide CT scan 

images, the 3D analysis was performed on less than half of the individuals. A total 

number of 51 adults of the main data sample (n = 143) were used for 3D cervical and 

RV analysis. Similar to the main data, the greatest number of the individuals in these 

two subsamples are males (Table 6.4) aged between 35-50 years old (Table 6.2). The 

distribution of adult individuals by sex and age for 3D data is shown in Figure 6.2. 

Detailed information about the age and sex of each skeleton can be found in Appendix 

C-A. The sex of the skeletons was estimated based on conventional morphological 

analysis.   

 

Table 6.4. Sex distribution of adult skeletons for 3D data 

Sex 

N 

Hasanlu Dinkha Tepe 

3D cervical RV 3D cervical RV 

Male 18 18 12 13 

Female 11 10 10 10 

Total 29 28 22 23 
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Fig. 6.2. The distribution of adult individuals by sex and age for 3D data. 

 

6.4. Odontometric Sex Estimation 

 

6.4.1. Dental Collection  

 

The preservation of dental remains was much better than skeletal elements, and dental 

measurements were collected from all adults whose sex was osteologically estimated.  

 

Of the 143 individuals analysed for dental completeness, 2,143 (46.8%) (Hasanlu= 

1,608, Dinkha Tepe= 535) teeth were present out of a possible 4576. Among the teeth 

analysed, the number of mandibular teeth (58%) was more than maxillary (42%) ones. 

In comparison with anterior teeth (incisors and canines, 36%), posterior teeth (molars 

and premolars) were much better (64%) represented (Table 6.5). The same pattern 

might also be attributed to numbers, because in a single dental arcade there is a total 

of 20 posterior teeth, in comparison with 12 anterior teeth. Nevertheless, the survival 

and recovery of premolars and molars with larger and more complex root systems are 

also influential. Dental measurements were taken for the entire arcade, right and left 

side. However, the majority of the teeth belonged to the right side (1,241 > 902), 

therefore the right-side measurements were used for sex estimation. In the case of a 
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missing value from the right side, the left antimere was substituted. A total number of 

65 teeth were also excluded from the analysis due to pathology and glue preventing 

the collection of accurate measurements. In total 1,327 maxillary and mandibular teeth 

from the Hasanlu (n = 1,010) and Dinkha Tepe (n = 317) collections were used for 

statistical analysis (Table 6.6). The 2D cervical measurements were taken from all 

1,327 teeth. Similar to the main tooth data, there were slightly more mandibular teeth 

(57%) than maxillary teeth (43%), and many more posterior teeth (65%) than anterior 

teeth (35%) (Table 6.6, Fig. 6.3).  

 

Table 6.5. Total number of teeth in the Hasanlu and Dinkha Tepe collections 

Collections Maxillary Mandibular Anterior Posterior 

Hasanlu 688 (32%) 920 (43%) 589 (27%) 1,019 (48%) 

Dinkha Tepe 208 (10%) 327 (15%) 193 (9%) 342 (16%) 

Total 896 (42%) 1,247 (58%) 782 (36%) 1,361 (64%) 

 

In the 3D cervical and RV measurements, a very small number of left-side teeth were 

available, which did not allow the author to test the statistical differences between left- 

and right-side teeth. Therefore, dental measurements were taken only from right-side 

teeth. In total, 457 and 480 3D tooth models were used for 3D cervical and RV analysis 

respectively. In these two subsamples, there were also more mandibular and posterior 

teeth than maxillary and anterior teeth (Table 6.6, Fig. 6.3).   

 

 Table 6.6. Number of teeth used for statistical analysis 

Diameter Maxillary Mandibular Anterior Posterior 

 HAS DIN HAS DIN HAS DIN HAS DIN 

2D cervical 448 (34%) 125 (9%) 562 (42%) 192 (14%) 349 (26%) 110 (8%) 661 (50%) 207 (16%) 

3D cervical 138 (30%) 82 (18%) 112 (25%) 125 (27%) 87 (19%) 75 (16%) 163 (36%) 132 (29%) 

RV 139 (29%) 93 (19%) 123 (26%) 125 (26%) 94 (20%) 77 (16%) 168 (35%) 141 (29%) 

HAS = Hasanlu, DIN = Dinkha Tepe 
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Fig. 6.3. The distribution of the maxillary, mandibular, anterior and posterior teeth for 2D 

and 3D data. 

 

6.4.2. 2D/3D MD Cervical Measurements 

 

As Table 6.7 shows taking the 2D MD cervical measurements from the buccal or 

lingual side greatly affected the resultant measurements. The differences in average 

measurements varying from 0.08mm to 0.24mm. The lowest and highest degree of 

difference was observed in LM2 (0.08mm) and LP4 (0.24mm) respectively. The 

degree of differences between labial and lingual sides was significantly lower for 3D 

cervical MD measurements when compared to 2D cervical MD measurements. As 

shown in Table 6.8, The maximum average difference between 3D MD measurements 

was 0.05, which was significantly less than the results obtained from 2D measurements 

(>0.24).  
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Table 6.7. Comparison of the mean MD cervical measurement from lingual and buccal 

positions (measurements are in mm). 

Teeth N Average 

measurement from 

lingual position 

Average 

measurement from 

buccal position  

Differences in 

average 

measurements 

UI1 18 6.21 6.40 0.19 

UI2 19 4.65 4.87 0.22 

UC 22 5.41 5.59 0.18 

UP3 25 4.62 4.83 0.21 

UP4 27 4.84 4.99 0.15 

UM1 23 7.65 7.74 0.09 

UM2 24 7.15 7.23 0.08 

UM3 15 6.64 6.74 0.10 

LI1 17 3.42 3.60 0.18 

LI2 16 3.91 4.07 0.16 

LC 24 5.22 5.39 0.17 

LP3 26 4.55 4.76 0.21 

LP4 24 4.73 4.97 0.24 

LM1 22 8.51 8.61 0.10 

LM2 23 8.47 8.55 0.08 

LM3 20 8.29 8.41 0.12 

 

Table 6.8. Comparison of the mean 3D MD cervical measurement from lingual and buccal 

positions (measurements are in mm). 

Teeth N Average 

measurement from 

lingual position 

Average 

measurement from 

buccal position 

Differences in 

average 

measurements 

UI1 18 6.18 6.20 0.02 

UI2 19 4.60 4.56 0.04 

UC 19 5.40 5.38 0.02 

UP3 20 4.79 4.83 0.04 

UP4 21 4.75 4.71 0.04 

UM1 18 7.56 7.58 0.02 

UM2 18 7.23 7.24 0.01 

UM3 12 6.70 6.75 0.05 

LI1 17 3.37 3.42 0.05 

LI2 16 3.80 3.82 0.02 

LC 20 5.16 5.19 0.03 

LP3 21 4.68 4.66 0.02 

LP4 20 4.76 4.80 0.04 

LM1 19 8.48 8.50 0.02 

LM2 18 8.67 8.68 0.01 

LM3 14 8.30 8.35 0.05 
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6.4.3. Statistical Analysis 

 

6.4.3.1. Intra- and inter-observer Error 

 

Intra- and inter-observer error were calculated for each set of data to check the 

reliability of the methods. TEM, rTEM and the coefficient of reliability (R) (Ulijaszek 

and Kerr, 1999) were used to determine the differences between the two sets of 

measurements. Intra-observer error was assessed using a random subset of 50 

individuals for 2D cervical measurements, and 35 individuals for both 3D cervical and 

RV measurements, while a random subset of 30 individuals was used to assess inter-

observer error for each set of data.  

 

Tables 6.9 and 6.10 show the mean difference between the two sets of measurements, 

TEM, rTEM, and the coefficient of reliability results, evaluating intra-observer error 

for 2D cervical, 3D cervical and RV measurements. The mean differences take into 

account whether the values obtained from the first measurement are consistently 

higher or lower than those taken from the second measurement, and therefore vary 

from negative to positive. The mean difference in all teeth was between −0.02 and 

+0.01mm for 2D cervical measurements, −0.01 and +0.01mm for 3D cervical 

measurements (Table 6.9), and −2.02 and +1.89mm for RV measurements (Table 

6.10); the amount to which they were positive or negative was not consistent enough 

to suggest a strong methodological difference between the two repeated 

measurements. The TEM values were very low for both 2D and 3D cervical 

measurements, varying from 0.02-0.04mm (Table 6.9). These values were 

significantly higher for RV measurements, varying from 1.94-4.65mm (Table 6.10). 

This difference is due to the positive association between the size of the TEM and the 

size of the measurements (see Chapter 3). To solve this problem, the TEM was 

converted to relative TEM. This conversion provided very low rTEM percentages 

(Tables 6.9 and 6.8). The mean rTEM for 2D and 3D cervical measurements was 

0.45% and 0.46% respectively, and for RV measurements it was 1.54%. The R for all 

variables found to be > 99%, which represents almost complete reliability (Ulijaszek 

and Kerr, 1999). The variables with the highest value for intra-observer error were the 
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MD measurement of LI2 for both 2D and 3D cervical measurements, and LP4 for RV 

measurements (Tables 6.9 and 6.10). 

 

Inter-observer error was slightly higher than intra-observer error for all sets of data. 

The mean difference for 2D cervical, 3D cervical and RV measurements was between 

−0.02 and +0.06mm, −0.03 and +0.03mm, and −1.14 and +1.97mm, respectively 

(Tables 6.10 and 6.11). The TEM values for both cervical measurements varied from 

0.03-0.05mm, and for RV measurements varied from 2.21-4.98mm. The mean rTEM 

was 0.62% for 2D cervical measurements, 0.60% for 3D cervical measurements and 

1.75% for RV measurements, with R values > 0.98 for all measurements (Tables 6.10 

and 6.11). The variable with the highest inter-observer error for all three sets of data 

was LI2.   

 

In general, inter- and intra-observer error values for 2D cervical measurements were 

very similar to those obtained for 3D cervical measurements, and they were higher for 

RV measurements. The rTEM and R values for all the measurements were below the 

5% rTEM and above the 0.95 R standards for anthropometric studies (Franklin et al., 

2013).  

 

Mean and standard deviation values of repeated measurements for 2D cervical, 3D 

cervical and RV measurements are summarized in Appendix A. 
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Table 6.9. Mean difference, TEM, rTEM, and coefficient of reliability results evaluating 

intra-observer error in 2D and 3D cervical measurements (measurements are in mm). 

Measurements 2D cervical 3D cervical 

MD N Diff TEM rTEM R N Diff TEM rTEM R 

UI1 36 −0.01 0.03 0.45 1 22 0.00 0.03 0.46 1 

LI1 25 0.00 0.02 0.58 0.99 26 −0.01 0.02 0.7 0.99 

UI2 36 0.00 0.03 0.61 1 21 −0.01 0.03 0.56 1 

LI2 39 −0.01 0.04 0.78 0.99 26 0.00 0.03 0.76 0.99 

UC 37 0.00 0.03 0.53 1 34 0.00 0.03 0.6 1 

LC 48 −0.01 0.03 0.49 1 29 0.00 0.02 0.44 1 

UP3 38 −0.01 0.04 0.72 0.99 34 −0.01 0.03 0.6 1 

LP3 50 −0.01 0.03 0.55 0.99 32 0.01 0.03 0.62 1 

UP4 42 −0.01 0.03 0.65 1 31 0.01 0.03 0.57 1 

LP4 38 0.00 0.04 0.47 1 30 0.01 0.02 0.5 1 

UM1 48 0.00 0.04 0.39 1 29 0.00 0.03 0.38 1 

LM1 31 −0.01 0.03 0.26 1 29 −0.01 0.03 0.32 1 

UM2 42 −0.01 0.04 0.45 1 29 0.00 0.03 0.38 1 

LM2 22 −0.02 0.03 0.36 1 34 −0.01 0.03 0.37 1 

UM3 18 0.00 0.04 0.54 1 14 0.00 0.03 0.39 1 

LM3 31 0.00 0.03 0.36 1 21 0.00 0.03 0.29 1 

BL           

UI1 36 −0.01 0.03 0.48 1 22 0.00 0.03 0.46 1 

LI1 22 0.00 0.03 0.49 0.99 26 0.01 0.03 0.58 0.99 

UI2 36 0.00 0.02 0.44 1 21 0.01 0.03 0.6 0.99 

LI2 39 −0.01 0.03 0.47 0.99 26 0.01 0.02 0.43 1 

UC 37 0.00 0.03 0.33 1 34 0.00 0.03 0.35 1 

LC 48 0.00 0.02 0.31 1 29 0.00 0.03 0.45 1 

UP3 38 −0.01 0.03 0.38 1 34 −0.01 0.03 0.41 1 

LP3 50 0.00 0.03 0.45 0.99 32 0.00 0.03 0.42 1 

UP4 42 0.01 0.03 0.39 1 31 0.00 0.03 0.37 1 

LP4 38 0.00 0.03 0.35 1 30 0.00 0.04 0.56 1 

UM1 41 −0.01 0.03 0.29 1 29 0.00 0.03 0.28 1 

LM1 40 0.00 0.03 0.33 1 29 0.00 0.03 0.3 1 

UM2 39 −0.01 0.03 0.32 1 29 0.01 0.03 0.29 1 

LM2 37 0.01 0.03 0.38 1 34 0.00 0.04 0.51 0.99 

UM3 25 0.01 0.03 0.36 1 14 0.00 0.03 0.32 1 

LM3 31 −0.01 0.03 0.39 1 21 −0.01 0.03 0.33 1 
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Table 6.10. Mean difference, TEM, rTEM, and coefficient of reliability results evaluating 

intra- and inter-observer error in RV measurements (measurements are in mm3).  

Measurements Intra-observer error Inter-observer error 

RV N Diff TEM rTEM R N Diff TEM rTEM R 

UI1 22 1.5 3.61 1.66 1 20 1.82 4.8 2.12 0.99 

LI1 26 0.73 1.94 1.97 0.99 21 −0.16 2.21 2.2 0.98 

UI2 26 0.80 2.6 1.93 1 23 1.41 3.33 2.27 0.99 

LI2 24 −0.62 2.4 1.87 0.99 20 1.30 2.77 2.18 0.99 

UC 34 0.03 3.89 1.57 1 25 0.36 4.63 1.86 1 

LC 26 1.89 2.96 1.26 1 22 0.91 3.69 1.5 1 

UP3 34 0.95 3.09 1.88 1 22 0.32 3.05 2.01 0.99 

LP3 31 −0.26 2.81 1.83 0.99 24 −1.14 3.2 1.98 0.99 

UP4 32 0.73 3.32 1.94 1 24 1.12 3.9 2.24 0.99 

LP4 30 −0.30 3.8 2.06 0.99 23 0.43 4.13 2.22 0.99 

UM1 28 0.92 4.16 0.97 1 25 0.07 4.56 1.06 1 

LM1 29 0.73 3.77 0.91 1 23 −0.27 4.24 0.99 1 

UM2 31 −0.63 4.59 1.15 1 24 0.46 4.98 1.21 1 

LM2 32 0.09 3.76 1.02 1 22 −0.83 4.23 1.1 1 

UM3 10 −2.02 4.65 1.49 1 6 −0.97 4.71 1.69 1 

LM3 20 0.71 3.66 1.11 1 12 1.97 4.46 1.39 1 
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Table 6.11. Mean difference, TEM, rTEM, and coefficient of reliability results evaluating 

inter-observer error in 2D and 3D cervical measurements (measurements are in mm).   

Measurements 2D cervical 3D cervical 

MD N Diff TEM rTEM R N Diff TEM rTEM R 

UI1 26 −0.01 0.04 0.57 1 19 0.01 0.04 0.61 1 

LI1 21 0.01 0.03 0.75 0.98 21 −0.01 0.03 0.9 0.98 

UI2 28 0.01 0.05 0.75 1 20 −0.01 0.04 0.78 1 

LI2 27 −0.01 0.03 0.87 0.99 20 0.00 0.03 0.88 0.99 

UC 30 0.01 0.04 0.68 1 24 0.00 0.04 0.77 1 

LC 31 0.01 0.04 0.69 1 23 0.02 0.03 0.59 1 

UP3 29 −0.01 0.04 0.76 1 24 −0.01 0.04 0.8 0.99 

LP3 28 0.01 0.03 0.76 0.99 22 0.02 0.04 0.79 0.99 

UP4 30 0 0.04 0.75 0.99 22 0.03 0.04 0.81 0.99 

LP4 27 0.01 0.04 0.83 0.99 23 0.02 0.04 0.77 0.99 

UM1 27 0 0.05 0.56 0.99 24 0.01 0.04 0.5 0.99 

LM1 29 0 0.04 0.52 1 23 0.00 0.04 0.44 1 

UM2 28 −0.02 0.05 0.62 0.99 24 0.02 0.03 0.46 1 

LM2 25 0.02 0.05 0.57 0.99 24 0.01 0.04 0.43 1 

UM3 14 −0.02 0.04 0.61 1 8 0.01 0.04 0.7 1 

LM3 20 0.02 0.05 0.54 1 13 0.02 0.05 0.51 1 

BL              

UI1 26 0.01 0.04 0.58 1 19 0.00 0.04 0.61 0.99 

LI1 21 −0.01 0.04 0.68 0.99 21 0.02 0.04 0.66 0.99 

UI2 28 0.00 0.03 0.61 1 20 0.02 0.04 0.75 0.99 

LI2 27 0.00 0.04 0.65 0.99 20 0.02 0.03 0.6 0.99 

UC 30 0.00 0.04 0.49 1 24 0.00 0.03 0.45 0.99 

LC 31 −0.01 0.03 0.44 1 23 0.01 0.04 0.62 1 

UP3 29 0.00 0.04 0.56 0.99 24 0.00 0.04 0.49 1 

LP3 28 0.02 0.04 0.69 0.99 22 0.00 0.04 0.54 1 

UP4 30 −0.01 0.04 0.55 1 22 0.02 0.04 0.5 1 

LP4 27 0.00 0.05 0.71 1 23 0.01 0.03 0.5 1 

UM1 27 −0.02 0.04 0.46 0.99 24 0.01 0.03 0.34 1 

LM1 29 0.01 0.04 0.53 1 23 0.01 0.03 0.4 1 

UM2 28 0.00 0.04 0.52 1 24 0.01 0.04 0.36 1 

LM2 25 0.01 0.04 0.49 1 24 0.00 0.05 0.62 0.99 

UM3 14 0.06 0.04 0.62 1 8 0.03 0.04 0.44 1 

LM3 20 −0.02 0.04 0.48 1 13 −0.03 0.04 0.57 0.99 
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6.4.3.2. Normality and Homogeneity of Variances Tests 

 

The Kolmogorov-Smirnov and Shapiro-Wilk tests were applied for each sex and 

measurement separately to check the normality of the data. There was an excellent 

agreement between the two tests, and the p-values of all measurements were higher 

than 0.05. The results showed that all measurements were normally distributed within 

each sex. The results of both tests for cervical measurements are presented in Tables 

6.12 and 6.13, and for RV measurements in Table 6.114.   

 

Table 6.12. Normality test results for 2D and 3D cervical measurements (maxillary teeth) 

Tooth Sex Measurements  2D cervical 3D cervical 

 N 
Kolmogorov

-Smirnov 

Shapiro-

Wilk 
N 

Kolmogorov

-Smirnov 

Shapiro-

Wilk 

UI1 

 

Males 
MD 30 0.19 0.42 15 0.20 0.98 

BL 30 0.20 0.78 15 0.20 0.54 

Females 
MD 22 0.20 0.59 7 0.20 0.88 

BL 22 0.20 0.36 7 0.20 0.92 

UI2 

Males 
MD 34 0.20 0.85 14 0.20 0.31 

BL 34 0.20 0.26 14 0.20 0.57 

Females 
MD 21 0.20 0.60 8 0.20 0.99 

BL 21 0.20 0.19 8 0.20 0.27 

UC 

Males 
MD 50 0.20 0.09 20 0.20 0.16 

BL 50 0.20 0.21 20 0.20 0.88 

Females 
MD 34 0.09 0.19 15 0.20 0.34 

BL 34 0.20 0.56 15 0.20 0.34 

UP3 

Males 
MD 52 0.09 0.27 21 0.20 0.31 

BL 52 0.20 0.44 21 0.20 0.44 

Females 
MD 35 0.20 0.46 14 0.20 0.62 

BL 35 0.06 0.73 14 0.20 0.53 

UP4 

Males 
MD 49 0.20 0.71 16 0.20 0.86 

BL 49 0.20 0.49 16 0.20 0.77 

Females 
MD 34 0.20 0.40 15 0.17 0.45 

BL 34 0.20 0.53 15 0.20 0.28 

UM1 

Males 
MD 51 0.20 0.85 17 0.20 0.91 

BL 51 0.20 0.54 17 0.20 0.70 

Females 
MD 33 0.20 0.92 13 0.20 0.36 

BL 33 0.20 0.42 13 0.20 0.91 

UM2 

Males 
MD 52 0.20 0.59 21 0.20 0.57 

BL 52 0.20 0.38 21 0.20 0.84 

Females 
MD 30 0.20 0.51 9 0.20 0.22 

BL 30 0.20 0.95 9 0.20 0.77 

UM3 

Males 
MD 30 0.20 0.92 8 0.20 0.94 

BL 30 0.17 0.46 8 0.20 0.81 

Females 
MD 16 0.17 0.63 6 0.20 0.37 

BL 16 0.20 0.95 6 0.20 0.29 
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Table 6.13. Normality test results for 2D and 3D cervical measurements (mandibular teeth) 

Tooth Sex Measurements  2D cervical 3D cervical 

 N 
Kolmogorov

-Smirnov 

Shapiro-

Wilk 
N 

Kolmogorov

-Smirnov 

Shapiro-

Wilk 

LI1 

 

Males 
MD 48 0.20 0.10 15 0.20 0.66 

BL 48 0.07 0.28 15 0.20 0.75 

Females 
MD 27 0.20 0.09 12 0.20 0.73 

BL 27 0.20 0.78 12 0.20 0.99 

LI2 

Males 
MD 59 0.07 0.06 15 0.20 1.00 

BL 59 0.20 0.69 15 0.06 0.21 

Females 
MD 32 0.15 0.12 11 0.20 0.62 

BL 32 0.11 0.25 11 0.20 0.12 

LC 

Males 
MD 66 0.20 0.33 19 0.20 0.93 

BL 66 0.20 0.84 19 0.20 0.89 

Females 
MD 36 0.20 0.87 12 0.20 0.22 

BL 36 0.20 0.53 12 0.20 0.92 

LP3 

Males 
MD 69 0.20 0.29 20 0.06 0.17 

BL 69 0.20 0.20 20 0.20 0.15 

Females 
MD 42 0.20 0.99 14 0.20 0.1 

BL 42 0.20 0.15 14 0.19 0.1 

LP4 

Males 
MD 68 0.20 0.79 20 0.13 0.13 

BL 68 0.07 0.13 20 0.46 0.46 

Females 
MD 36 0.20 0.21 12 0.20 0.55 

BL 36 0.20 0.50 12 0.20 0.12 

LM1 

Males 
MD 62 0.20 0.83 17 0.17 0.2 

BL 62 0.20 0.15 17 0.04 0.12 

Females 
MD 34 0.20 0.27 13 0.20 0.96 

BL 34 0.20 0.81 13 0.20 0.9 

LM2 

Males 
MD 69 0.20 0.18 21 0.20 0.94 

BL 69 0.20 0.62 21 0.20 0.46 

Females 
MD 38 0.19 0.53 15 0.20 0.27 

BL 38 0.20 0.55 15 0.20 1.00 

LM3 

Males 
MD 45 0.20 0.34 14 0.20 0.81 

BL 45 0.20 0.81 14 0.20 0.81 

Females 
MD 24 0.18 0.30 8 0.20 0.81 

BL 24 0.14 0.15 8 0.20 0.19 

 

The assumption of homogeneity of variance was tested using Levene’s Test of 

Equality of Variances. As can be seen in Table 6.15, the p-values of all measurements 

were greater than 0.05, indicating that the sample is statistically homogenous in all 

measurements.  
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Table 6.14. Normality test results for RV measurements (maxillary and mandibular teeth) 

Tooth Males Females 

 N Kolmogorov

-Smirnov 

Shapiro-

Wilk 
N Kolmogorov

-Smirnov 

Shapiro-

Wilk UI1 14 0.20 0.97 7 0.20 0.22 

UI2 17 0.20 0.29 8 0.20 0.12 

UC 19 0.20 0.66 16 0.20 0.14 

UP3 25 0.20 0.84 17 0.18 0.23 

UP4 18 0.20 0.99 16 0.11 0.43 

UM1 18 0.09 0.30 12 0.11 0.09 

UM2 20 0.20 0.83 11 0.20 0.67 

UM3 6 0.20 0.72 8 0.20 0.82 

LI1 17 0.14 0.10 11 0.17 0.16 

LI2 18 0.20 0.77 11 0.20 0.41 

LC 20 0.09 0.36 12 0.20 0.69 

LP3 22 0.20 0.10 15 0.12 0.13 

LP4 21 0.20 0.93 11 0.14 0.10 

LM1 19 0.20 0.69 11 0.20 0.15 

LM2 22 0.19 0.16 14 0.20 0.32 

LM3 15 0.20 0.71 9 0.06 0.15 

 

 

Table 6.15. Levene’s test results for 2D cervical, 3D cervical and RV measurements 

Tooth 2D cervical 3D cervical RV 

  p-value  p-value  p-value 

 N MD BL N MD BL N Volume 

UI1 52 0.74 0.12 15 0.53 0.31 14 0.62 

UI2 55  0.06 0.22 14 0.74 0.65 17 0.08 

UC 84 0.58 0.98 20 0.07 0.75 19 0.10 

UP3  87 0.53 0.93 21 0.14 0.07 24 0.28 

UP4 83 0.27 0.90 16 0.14 0.12 17 0.29 

UM1  84 0.67 0.23 17 0.10 0.08 18 0.37 

UM2  82 0.97 0.48 21 0.63 0.12 20 0.25 

UM3  45 0.20 0.10 8 0.56 0.13 6 0.07 

LI1  75 0.72 0.08 15 0.41 0.21 17 0.53 

LI2   91 0.08 0.81 15 0.06 0.08 18 0.61 

LC  102 0.38 0.55 19 0.33 0.24 20 0.18 

LP3  110 0.73 0.41 20 0.41 0.43 22 0.10 

LP4 103 0.86 0.45 20 0.88 0.13 21 0.12 

LM1 95  0.45 0.19 17 0.78 0.21 19 0.43 

LM2 106 0.31 0.65 21 0.52 0.26 22 0.28 

LM3  68 0.19 0.45 14 0.48 0.62 15 0.53 
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6.4.3.3. Student t-test  

 

6.4.3.3.1. Differences between Hasanlu and Dinkha Tepe Skeletons 

 

An independent student t-test was performed to check the mean differences between 

Hasanlu and Dinkha Tepe skeletons. In all three sets of data, both maxillary and 

mandibular teeth showed no statistically significant differences between the mean 

values of Hasanlu and Dinkha Tepe skeletons (p > 0.05). Accordingly, the two samples 

were subsequently pooled to increase sample size for analysis. The only exceptions 

were the 2D and 3D cervical MD measurements of UM3, which showed a significant 

difference between the two collections and was therefore removed from the analysis 

(Table 6.16). Bootstrapping was also used in all measurements. SPSS was used to 

generate around 1,000 bootstrap samples for each measurement to obtain the p-values. 

The results produced by bootstrap samples also showed no significant difference 

between the measurements, except the cervical MD measurements of UM3. Tables 

6.16 and 6.15 present the t-values, and the p-values for both the original sample and 

the bootstrap sample. The difference in the means and variances of the two populations 

were used to calculate the t-value. The greater the t-value, the more certain it is that 

the means are different. Mean and standard deviation for each measurement are 

presented in Appendix A. 
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Table 6.16. Independent student t-test comparing the means between Hasanlu and Dinkha 

Tepe collections, including original and bootstrap samples: 2D and 3D cervical measurements  

Measurements 2D cervical 3D cervical 

 
N 

t-

value 

p-

value 

Bootstrap 

p-value N 
t-

value 

p-

value 

Bootstrap 

p-value 

MD Hasanlu Dinkha   Hasanlu Dinkha  

UI1 44 8 1.21 0.23 0.13 15 7 0.65 0.53 0.49 

UI2 55 20 0.32 0.75 0.72 12 15 0.46 0.65 0.66 

UC 43 12 1.64 0.10 0.14 13 9 1.84 0.08 0.09 

UP3 68 23 −1.48 0.14 0.17 12 14 −0.05 0.96 0.96 

UP4 64 20 0.55 0.58 0.59 21 14 0.95 0.35 0.35 

UM1 75 27 −0.99 0.32 0.34 14 16 −0.25 0.81 0.80 

UM2 71 16 −0.20 0.84 0.86 23 12 0.03 0.98 0.98 

UM3 84 27 −1.41 0.16 0.16 17 17 −1.33 0.19 0.19 

LI1 64 19 −0.71 0.48 0.48 19 12 −0.33 0.75 0.75 

LI2 80 24 −1.69 0.09 0.08 17 15 −1.12 0.27 0.28 

LC 67 17 −0.14 0.88 0.87 20 10 −0.23 0.82 0.8 

LP3 73 22 −0.75 0.46 0.43 16 14 0.74 0.47 0.45 

LP4 62 20 −1.30 0.20 0.18 20 10 −0.57 0.57 0.52 

LM1 79 28 −0.45 0.65 0.62 18 18 −0.81 0.42 0.42 

LM2 33 13 −2.99 0.00a 0.00a 7 7 −2.33 0.04b 0.05 

LM3 47 21 −1.63 0.11 0.10 6 16 −0.13 0.90 0.91 

BL             

UI1 44 8 1.32 0.19 0.28 15 7 0.23 0.82 0.86 

UI2 55 20 0.90 0.37 0.36 12 15 1.14 0.26 0.28 

UC 43 12 1.41 0.16 0.16 13 9 1.49 0.15 0.17 

UP3 68 23 0.30 0.77 0.80 12 14 0.16 0.88 0.87 

UP4 63 20 1.33 0.19 0.12 21 14 1.30 0.20 0.16 

UM1 74 27 0.00 1.00 1.00 14 16 −0.03 0.97 0.97 

UM2 71 16 1.47 0.15 0.15 23 12 1.97 0.07 0.06 

UM3 84 26 −0.87 0.39 0.41 17 17 −0.86 0.40 0.42 

LI1 64 19 1.14 0.26 0.16 19 12 1.05 0.30 0.24 

LI2 80 23 −1.61 0.11 0.08 16 15 0.19 0.84 0.84 

LC 66 17 0.54 0.59 0.53 20 10 0.95 0.35 0.29 

LP3 74 22 −0.45 0.65 0.66 16 14 −0.19 0.85 0.84 

LP4 62 20 −1.11 0.27 0.22 20 10 −0.10 0.92 0.92 

LM1 79 27 −0.24 0.81 0.80 18 18 −1.13 0.27 0.29 

LM2 32 13 0.71 0.48 0.49 7 7 0.60 0.56 0.54 

LM3 47 21 −0.55 0.59 0.59 6 16 −1.16 0.26 0.28 
a p < 0.05 
b P < 0.05 
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Table 6.17. Independent student t-test comparing the means between Hasanlu and Dinkha 

Tepe collections, including original and bootstrap samples: RV measurements  

Tooth N t-value p-value Bootstrap 

p-value 
 Hasanlu Dinkha   

UI1 14 7 1.02 0.32 0.35 

UI2 14 15 0.30 0.76 0.79 

UC 14 11 0.32 0.16 0.16 

UP3 15 14 0.05 0.96 0.97 

UP4 20 15 1.03 0.31 0.32 

UM1 16 16 −0.87 0.39 0.42 

UM2 23 18 1.26 0.21 0.22 

UM3 19 18 −0.75 0.46 0.47 

LI1 19 14 −0.16 0.88 0.88 

LI2 17 15 −0.63 0.53 0.53 

LC 19 11 0.77 0.45 0.44 

LP3 15 15 −0.94 0.36 0.36 

LP4 21 10 0.02 0.99 0.98 

LM1 18 18 −1.16 0.25 0.25 

LM2 7 7 −0.69 0.50 0.53 

LM3 9 15 0.22 0.83 0.83 

 

 

6.4.3.3.2. Differences between right- and left-side teeth 

 

Paired student t-test showed no statistically significant differences between right- and 

left-side teeth for both maxillary and mandibular dentition (p > 0.05) (Table 6.18). 

Mean and standard deviations for each measurement are presented in Appendix A. 
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Table 6.18. Paired student t-test comparing the means between right- and left-side teeth: 2D 

cervical measurements 

Measurements Males Females 

MD N t-value* p-value N t-value p-value 

UI1 17 −0.35 0.73 12 −0.65 0.53 

LI1 27 −0.19 0.85 14 0.27 0.79 

UI2 15 −0.77 0.45 11 1.71 0.12 

LI2 35 −0.93 0.36 20 0.10 0.92 

UC 34 −0.15 0.89 15 −1.12 0.25 

LC 42 −1.57 0.12 22 0.67 0.51 

UP3 32 −0.63 0.53 17 −1.31 0.21 

LP3 48 −0.93 0.36 24 1.20 0.24 

UP4 25 −1.20 0.24 14 1.17 0.26 

LP4 50 0.83 0.41 19 0.11 0.91 

UM1 28 0.76 0.46 16 1.18 0.26 

LM1 49 −0.70 0.49 18 0.81 0.43 

UM2 26 1.89 0.07 13 1.09 0.30 

LM2 49 −0.63 0.53 16 0.99 0.34 

UM3 13 −1.62 0.13 5 0.46 0.67 

LM3 19 1.55 0.14 6 −0.24 0.82 

BL       

UI1 17 −0.91 0.38 12 −0.71 0.49 

LI1 27 1.00 0.33 14 −1.00 0.34 

UI2 15 0.50 0.62 11 −1.14 0.28 

LI2 35 1.44 0.16 20 1.21 0.24 

UC 34 −0.03 0.98 15 −0.90 0.38 

LC 42 1.23 0.23 22 0.50 0.62 

UP3 32 −0.34 0.73 17 0.61 0.55 

LP3 48 1.48 0.15 24 1.33 0.20 

UP4 25 0.09 0.93 14 1.32 0.21 

LP4 50 1.66 0.10 19 −0.11 0.91 

UM1 28 −0.30 0.76 16 0.71 0.49 

LM1 49 −1.00 0.32 18 0.86 0.40 

UM2 26 0.95 0.35 13 1.06 0.31 

LM2 49 −1.75 0.09 16 −1.89 0.08 

UM3 13 0.16 0.88 5 1.18 0.30 

LM3 19 −1.60 0.13 6 −1.55 0.18 
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6.4.3.3.3. 2D and 3D Cervical Measurements Comparison 

 

A paired student t-test was performed to compare the cervical measurements obtained 

by dental callipers with those obtained by the AMIRA software. In total, 2D and 3D 

cervical MD and BL measurements of 427 maxillary and mandibular teeth were 

compared. As Table 6.19 shows, no statistically significant differences were found 

between the two sets of data (p > 0.05), except for the MD measurement of LM2 and 

the BL measurement of UM2 (p < 0.05). As can be seen in Figure 6.4, the highest level 

of significance (> 0.90) was observed in MD measurements of UI1, and BL 

measurements of UP3 and LP3. In general, when compared to cervical BL 

measurements, cervical MD measurements showed a higher level of significance, 

similar to that found in mandibular teeth when compared to maxillary teeth. UP3 and 

LP3 were the only teeth which provided a very high level of significance (> 0.70) for 

both cervical MD and BL measurements (Table 6.19, Fig. 6.4). On average, the 3D 

cervical MD measurements were 0.02mm smaller than the 2D cervical MD 

measurements, while the 3D cervical BL measurements were 0.01mm smaller than 2D 

cervical BL measurements (Table 9, Appendix A).   

 

 

Fig. 6.4. Mean differences between 2D and 3D cervical measurements for all teeth. 
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The bootstrap sample (n = 1,000) also provided results very close to the original 

sample (Table 6.19). Mean and standard deviations for each measurement are 

presented in Appendix A. 

 

Table 6.19. Paired student t-test comparing the means between 2D and 3D cervical 

measurements, including original and bootstrap samples 

Measurements N Mean 

Diff 

(mm) 

t-value p-value Bootstrap p-value 

MD      

UI1 21 0.00 0.03 0.98 0.98 

LI1 23 0.00 −0.19 0.84 0.84 

UI2 20 0.09 1.97 0.06 0.06 

LI2 24 0.02 1.03 0.31 0.31 

UC 33 0.02 1.02 0.32 0.32 

LC 30 0.01 0.81 0.43 0.43 

UP3 30 0.01 −0.39 0.70 0.71 

LP3 34 0.00 −0.22 0.83 0.82 

UP4 29 0.04 2.00 0.06 0.06 

LP4 32 0.02 0.94 0.36 0.33 

UM1 25 0.01 −0.32 0.75 0.75 

LM1 28 0.02 0.71 0.48 0.46 

UM2 28 0.00 0.19 0.85 0.84 

LM2 35 0.05 2.24   0.03*   0.03* 

UM3 14 0.03 1.51 0.16 0.16 

LM3 21 0.03 1.53 0.14 0.12 

BL      

UI1 21 0.02 1.10 0.23 0.28 

LI1 23 0.02 0.79 0.44 0.43 

UI2 20 0.04 1.45 0.16 0.16 

LI2 24 0.05 1.99 0.06 0.07 

UC 33 0.04 1.68 0.10 0.10 

LC 29 0.06 2.42 0.20 0.03 

UP3 30 0.00 −0.11 0.91 0.91 

LP3 34 0.01 0.13 0.90 0.90 

UP4 29 0.03 1.25 0.22 0.22 

LP4 31 0.05 1.81 0.08 0.08 

UM1 25 0.04 −1.38 0.18 0.17 

LM1 28 0.01 −0.80 0.44 0.44 

UM2 28 0.07 −3.07   0.00*   0.02* 

LM2 35 0.03 −1.40 0.17 0.17 

UM3 14 0.04 1.11 0.23 0.31 

LM3 21 0.01 0.24 0.81 0.82 

*p < 0.05 
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6.4.3.4. Outlier Detection 

 

Tukey’s interquartile range (IQR) (1977) and Median Absolute Deviation (MAD) 

(Leys et al., 2013) were used to search for possible outliers. The IQR method identified 

seven outliers in the 2D cervical data, two outliers in the 3D cervical data and one 

outlier in the RV data. In addition to those data, the MAD method also detected three 

more outliers in the 2D cervical data, and one more outlier each in the 3D cervical and 

RV data. In total, ten measurements were shown to be outliers in the 2D cervical data, 

three measurements in the 3D cervical data and two measurements in the RV data. As 

Table 6.20 shows, the majority of the outliers were males (n = 11) and BL 

measurements (n = 10). In total, seven outliers in the 2D cervical measurements, and 

one outlier in each of the other two data sets were unusually high compared to the other 

measurements, which shows that these outliers were probably due to a typo or data 

entry error. Since outliers can affect reliability statistics, the outliers were excluded 

from each group of measurements.   

 

Table 6.20. Detected outliers in each set of data 

2D cervical 3D cervical RV 

Tooth N Sex Tooth N Sex Tooth N Sex 

BL UC 1 Female BL LP4 1 Female UP3 1 Male 

BL UM1 1 Male BL LM1 1 Male UP4 1 Male 

BL UM3 1 Male MD LM1 1 Male Total 2  

BL LC 1 Female Total 3   

BL LP3 1 Male  
 

 

BL LP4 1 Male 

BL LM2 1 Male 

BL LM3 1 Male 

MD LM1 1 Female 

MD LM3 1 Male 

Total 10  
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6.4.3.5. One-way ANOVA 

 

6.4.3.5.1. Univariate Sex Dimorphism 

 

A one-way ANOVA was used to compare the mean differences between males and 

females. The results of the one-way ANOVA indicated that the differences between 

male and female mean values were significant for all measurements (p < 0.000), except 

for MD UM3 in 2D cervical measurements, and MD and BL UM3 and MD LM3 in 

3D cervical measurements, which were excluded from the analysis. Due to the small 

number of UM3 in each set of data, as well as their high degree of variation in size 

(Townsend et al., 2016), measurements for this tooth were excluded from the 

discriminant function analysis. Tables 6.21, 6.22 and 6.23 show the sample size, 

descriptive statistics, p-value and associated univariate F-ratio of the differences 

between male and female individuals’ means. “The F-ratio reflects the variation 

among the means of several groups in relation to the variation within the groups” 

(Rubin, 2013, p.187). As Tables 6.21, 6.22 and 6.23 show, in both maxillary and 

mandibular teeth all measurements showed a higher value in males compared with 

females, particularly in RV measurements. The greatest sex dimorphism was observed 

in MD, BL and RV measurements of canines and M2 for all three sets of data (Tables 

6.21, 6.22, 6.23). The distribution of the mean differences between male and female 

tooth measurements for each set of data are presented in Figures 6.5 and 6.6. 
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Table 6.21. One-way ANOVA comparing the means between males and females: 2D cervical 

measurements 

Measurements Females Males 

Mean 

Diff. 

(mm) 

p-value F ratio 

 N 
Mean 

(mm) 
SD N 

Mean 

(mm) 
SD 

  
 

MD                 

UI1 22 5.99 0.49 30 6. 47 0.48 0.48     0.00a 12.25 

LI1 27 3.31 0.19 48 3.62 0.20 0.31 0.00 45.43 

UI2 21 4.53 0.50 34 4.97 0.33 0.44 0.00 14.91 

LI2 32 3.62 0.20 59 4.02 0.29 0.40 0.00 46.18 

UC 34 5.16 0.36 50 5.88 0.36 0.72 0.00 79.23 

LC 36 4.87 0.37 66 5.60 0.41 0.73 0.00 77.96 

UP3 35 4.27 0.35 52 4.76 0.32 0.49 0.00 44.87 

LP3 42 4.46 0.29 69 4.93 0.30 0.47 0.00 69.06 

UP4 34 4.43 0.29 49 4.89 0.36 0.46 0.00 39.38 

LP4 36 4.70 0.35 68 5.17 0.34 0.47 0.00 44.86 

UM1 33 7.43 0.33 51 7.91 0.38 0.48 0.00 35.14 

LM1 33 8.54 0.44 62 9.10 0.50 0.56 0.00 28.96 

UM2 30 6.94 0.56 52 7.87 0.54 0.93 0.00 54.76 

LM2 38 8.35 0.53 69 9.20 0.59 0.85 0.00 54.51 

  UM3* 16 6.87 0.75 30 7.00 0.58 0.13   0.49b 0.49 

LM3 24 8.25 1.00 44 8.94 0.77 0.69   0.00c 10.05 

BL                 

UI1 22 5.96 0.27 30 6.47 0.40 0.51 0.00 27.14 

LI1 27 5.27 0.27 48 5.66 0.34 0.39 0.00 26.17 

UI2 21 5.36 0.43 34 5.88 0.34 0.52 0.00 23.66 

LI2 32 5.76 0.34 59 6.12 0.31 0.36 0.00 26.47 

UC 33 7.32 0.48 50 8.14 0.48 0.82 0.00 59.25 

LC 35 6.91 0.54 66 7.75 0.46 0.84 0.00 60.91 

UP3 35 7.68 0.55 52 8.12 0.54 0.44 0.00 13.45 

LP3 42 6.31 0.42 68 6.90 0.48 0.59 0.00 43.26 

UP4 34 7.76 0.60 49 8.42 0.59 0.66 0.00 24.81 

LP4 36 6.76 0.60 67 7.33 0.56 0.57 0.00 23.04 

UM1 33 9.53 0.43 50 10.21 0.52 0.68 0.00 38.94 

LM1 34 8.27 0.46 62 8.97 0.56 0.70 0.00 39.29 

UM2 30 9.19 0.57 52 10.28 0.61 1.09 0.00 62.11 

LM2 38 7.73 0.56 69 8.65 0.58 0.92 0.00 62.15 

  UM3* 16 8.94 0.59 29 9.61 0.99 0.67 0.02 6.27 

LM3 24 7.59 0.50 44 8.19 0.48 0.60 0.00 23.16 
a Significant at p <0.01, b p < 0.05, c p < 0.002, all others significant at p < 0.000 

* Excluded from the discriminant function analysis. 
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Table 6.22. One-way ANOVA comparing the means between males and females: 3D cervical 

measurements 

Measurements Females Males 

Mean 

Diff. 

(mm) 

p-value F ratio 

 N 
Mean 

(mm) 
SD N 

Mean 

(mm) 
SD 

  
 

MD                 

UI1 7 5.79 0.42 15 6.52 0.47 0.73  0.00a 12.17 

LI1 12 3.30 0.11 15 3.69 0.15 0.39 0.00 58.87 

UI2 8 4.05 0.28 14 4.98 0.31 0.93 0.00 49.13 

LI2 11 3.50 0.14 15 4.06 0.30 0.56 0.00 32.58 

UC 15 4.92 0.20 20 5.84 0.34 0.92 0.00 88.39 

LC 11 4.58 0.25 19 5.54 0.34 0.96 0.00 66.04 

UP3 14 4.14 0.19 21 4.86 0.33 0.72 0.00 55.18 

LP3 14 4.36 0.31 20 4.99 0.26 0.63 0.00 41.43 

UP4 15 4.29 0.20 16 4.81 0.31 0.52 0.00 30.28 

LP4 12 4.51 0.35 20 5.18 0.34 0.67 0.00 28.68 

UM1 13 7.38 0.20 17 8.07 0.33 0.69 0.00 44.92 

LM1 13 8.48 0.45 17 9.09 0.43 0.61  0.00b 14.19 

UM2 9 7.04 0.44 21 7.96 0.57 0.92 0.00 18.33 

LM2 15 8.36 0.45 21 9.23 0.53 0.87 0.00 26.63 

  UM3* 6 6.77 0.71 8 6.90 0.96 0.13  0.78c 0.08 

  LM3* 8 8.82 0.58 14 9.04 0.81 0.22  0.50c 0.47 

BL                

UI1 7 5.75 0.26 15 6.54 0.36 0.79 0.00 26.04 

LI1 12 5.09 0.21 15 5.57 0.30 0.48 0.00 21.86 

UI2 8 5.17 0.30 14 5.76 0.29 0.59 0.00 21.11 

LI2 11 5.43 1.00 15 5.99 0.27 0.56 0.00 41.18 

UC 15 6.99 0.44 20 7.95 0.47 0.96 0.00 37.07 

LC 11 6.42 0.37 19 7.61 0.54 1.19 0.00 41.90 

UP3 14 7.43 0.39 21 8.15 0.60 0.72 0.00 15.80 

LP3 14 6.20 0.39 20 6.84 0.30 0.64 0.00 29.47 

UP4 15 7.42 0.42 16 8.37 0.67 0.95 0.00 21.94 

LP4 11 6.78 0.24 20 7.28 0.59 0.50  0.00 6.97 

UM1 13 9.39 0.32 17 10.11 0.58 0.72  0.00 16.01 

LM1 13 8.22 0.34 17 8.88 0.44 0.66   0.01d 19.77 

UM2 9 9.22 0.22 21 10.33 0.65 1.11 0.00 24.67 

LM2 15 7.80 0.41 21 8.54 0.49 0.74 0.00 22.15 

  UM3* 6 9.02 0.51 8 9.20 1.03 0.18  0.70c 0.16 

LM3 8 7.61 0.34 14 8.10 0.43 0.49   0.01e 7.72 
a 

Significant at p < 0.002, b p < 0.001, c p < 0.05, d p < 0.013, e p < 0.012, all others significant at p <0.00 

*Excluded from the discriminant function analysis 
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Table 6.23. One-way ANOVA comparing the means between males and females: RV 

measurements 

Measurements Females Males 

Mean 

Diff. 

(mm3) 

p-value a F 

ratio 

 N 
Mean 

(mm3) 
SD N 

Mean 

(mm3) 
SD 

  
 

UI1 7 139.64 29.82 14 245.44 24.26 105.80 0.00 76.43 

LI1 11 83.64 12.22 17 113.15 10.88 29.51 0.00 44.61 

UI2 8 82.63 10.71 17 170.49 20.83 87.86 0.00 124.67 

LI2 11 95.59 16.33 18 149.69 12.74 54.10 0.00 99.43 

UC 16 161.47 23.51 19 317.18 43.12 155.71 0.00 166.43 

LC 12 170.71 25.11 20 271.82 43.63 101.11 0.00 53.38 

UP3 17 115.76 20.70 24 182.19 26.32 66.43 0.00 75.16 

LP3 15 123.61 21.69 22 180.15 15.41 56.54 0.00 86.20 

UP4 16 135.34 20.15 17 198.34 26.87 63.00 0.00 61.97 

LP4 11 138.31 31.57 21 211.43 24.74 73.12 0.00 52.14 

UM1 12 363.96 62.46 18 483.44 51.40 119.48 0.00 32.76 

LM1 11 349.19 35.49 19 473.82 46.34 124.63 0.00 59.11 

UM2 11 305.93 48.88 20 461.90 68.09 155.97 0.00 44.71 

LM2 14 307.57 49.00 22 429.09 58.85 121.52 0.00 41.33 

 UM3* 8 237.66 15.16 6 311.53 33.59 73.87 0.00 30.96 

LM3 9 252.67 45.14 15 359.65 48.79 106.98 0.00 28.54 
a All significant at p<0.00. 

*Excluded from the discriminant function analysis. 

 

 

 

Fig. 6.5. Mean differences between males and females: cervical measurements. All 

statistically significant at p<0.00. 
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Fig. 6.6. Mean differences between males and females: RV measurements. All statistically 

significant at p<0.00.  
 

6.4.3.6. Sexual Dimorphism  

 

Table 6.24 presents the percentage of sexual dimorphism for 2D cervical MD, BL, 3D 

cervical MD, BL, and RV measurements for each tooth separately.  

 

It was observed that the most sexually dimorphic 2D cervical measurements were the 

MD diameter of LC, with a 14.99 percentage of dimorphism, followed by the MD 

diameter of UC and UM2, with a 13.93 and 13.40 percentage of dimorphism, 

respectively (Table 6.24). The MD diameter of UI2, with a 22.96 percentage of sexual 

dimorphism, was the most sexually dimorphic 3D cervical measurement, followed by 

the MD diameter of LC (20.96%) and the BL diameter of LC (18.54%) (Table 6.24). 

The most sexually dimorphic RV measurement was also UI2, with a 106.33 percentage 

of dimorphism, followed by the UC and UI1, each with a 96.43 and 75.77 percentage 

of dimorphism, respectively (Table 6.24). These measurements also showed a 

statistically significant difference between male and female measurements for all 

dimensions (Figs 6.5, 6.6). Figures 6.7 and 6.8 show the percentage of sexual 

dimorphism in each tooth for all maxillary and mandibular teeth. As the figures show, 

canines are the most dimorphic teeth for all dimensions and, in general, anterior teeth 
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are more sexually dimorphic than posterior teeth. A comparison between the maxillary 

and mandibular and the mesiodistal and buccolingual measurements shows that 

maxillary teeth are more sexually dimorphic than those of the mandible for 3D 

dimensions, and mandibular teeth are more sexually dimorphic than maxillary teeth 

for 2D dimensions, and also that MD measurements are more sexually dimorphic than 

BL measurements for both 2D and 3D cervical dimensions. The smallest sexual 

dimorphism was observed in M3 (particularly maxillary) for all diameters.  

 

Table 6.24. Sexual dimorphism percentages for all teeth and all dimensions 

Measurements 2D cervical 3D cervical  Tooth RV  

 N SD % N SD %  N SD % 

MD          
UI1 52 8.01 22 12.61 UI1 21 75.77 

LI1 75 9.37 27 11.82 LI1 28 32.58 

UI2 55 9.70 22 22.96 UI2 25 106.33 

LI2 91 11.05 26 16.00 LI2 29 56.60 

UC 84 13.93 35 18.70 UC 35 96.43 

LC 102 14.99 30 20.96 LC 32 59.23 

UP3 87 11.48 35 17.39 UP3 41 57.39 

LP3 111 10.54 34 14.45 LP3 37 45.74 

UP4 83 10.38 31 12.12 UP4 33 46.55 

LP4 104 10.16 32 14.86 LP4 32 52.87 

UM1 84 6.42 30 9.35 UM1 30 32.83 

LM1 95 6.56 30 7.19 LM1 30 35.69 

UM2 82 13.40 30 13.07 UM2 31 50.98 

LM2 107 10.18 36 10.41 LM2 36 39.51 

UM3 46 1.89 14 1.92 UM3 14 31.08 

LM3 68 8.36 22 2.49 LM3 24 42.34 

BL          

UI1 52 8.56 22 13.74    

LI1 75 7.37 27 9.43    

UI2 55 9.60 22 11.41    

LI2 91 6.25 26 10.31    

UC 83 11.20 35 13.73    

LC 101 12.16 30 18.54    

UP3 87 5.73 35 9.69    

LP3 110 9.35 34 10.32    

UP4 83 8.51 31 12.80    

LP4 103 8.38 31 7.37    

UM1 83 7.11 30 7.67    

LM1 96 7.06 30 8.03    

UM2 82 11.86 30 11.93    

LM2 107 11.90 36 9.49    

UM3 45 7.53 14 2.00    

LM3 68 7.91 22 6.44    
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Fig. 6.7. Percentage of sexual dimorphism in maxillary and mandibular teeth: cervical 

measurements. 

 

 

 

 
 

Fig. 6.8. Percentage of sexual dimorphism in maxillary and mandibular teeth: RV 

measurements. 
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6.4.3.7. The Pearson Correlation Coefficient 

 

The present study used the Pearson correlation coefficient to analyse the relationship 

between 2D cervical and RV measurements. Table 6.25 shows the coefficient and the 

p-value for each tooth measurement. The results show that all positively correlated 

variables with a correlation above 0.40 are significant (p < 0.05), and those above 0.50 

are highly significant (p < 0.01). These results are in accordance with those reported 

for crown and root length measurements (Garn et al., 1978; Harris and Couch, 2006).  

 

The scatterplots (Figs 6.8, 6.9) also suggest a positive correlation between both MD 

and RV measurements and BL and RV measurements, with the larger values of MD 

and BL tending to be related to the larger values of RV measurements. The correlation 

between cervical MD and RV measurements ranged from 0.44 to 0.82; with the 95% 

confidence interval ranging from 0.11 to 0.91. The correlation between cervical BL 

and RV measurements ranged from 0.43 to 0.76; with the 95% confidence interval 

ranging from 0.10 to 0.88 (Table 6.25). The weakest correlation was observed between 

the BL measurement of UP4 and its RV measurement, and also between the MD 

measurement of LM1 and its RV measurement (Table 6.25). The strongest correlation 

was observed between the MD measurement of UC and its RV measurement, followed 

by the MD measurement of LI2 and its RV measurement (Table 6.25). The regression 

analysis also showed a significant linear relationship between 2D MD and BL cervical 

and RV measurements. The R2 values indicated that 75% and 66% of the RV 

measurements were predictable from 2D MD and 2D BL cervical measurements, 

respectively (Fig. 6.9). 

 

It is normally preferable to find axes of variation that are statistically independent. In 

this way, the sexual dimorphism that some tooth dimensions exhibit is not duplicative 

of that of other dimensions. A greater statistical power to discriminate between the 

sexes based on multiple tooth dimensions could be provided by using separate “axes” 

of variation. Taking into account the consistently positive results, the high correlations 

shown in Table 6.25 generally imply the presence of effectively only a single 

statistical, and inferentially biological, axis of sexual dimorphism. In order to 
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determine the most significant variable contributing to sex estimation, stepwise 

discriminant function analysis was carried out between the 2D cervical and RV 

measurements. The results of the stepwise analysis (Table 6.25) show that the RV 

measurements that were variable made the most significant contribution to 

discrimination.   

 

Table 6.25: Matrix of Pearson correlation coefficient between 2D cervical and RV 

measurements for all teeth: original and bootstrap samples  

Toot

h 

 Original sample Bootstrap sample 

 N* Coefficient p-value Confidence limits (95%) Bias 

  MD BL MD BL MD BL MD BL 

      Lower Uppe

r 

Lower Upper   

LI1 23 0.62 0.56 0.00 0.00 0.39 0.82 0.21 0.80 0.00 0.00 

LI2 23 0.78 0.69 0.00 0.00 0.57 0.91 0.45 0.87 0.00 0.00 

UC 30 0.82 0.71 0.00 0.00 0.72 0.91 0.53 0.85 0.00 0.00 

LC 29 0.70 0.72 0.00 0.00 0.48 0.88 0.50 0.86 0.00 0.00 

UP3 30 0.71 0.67 0.00 0.00 0.49 0.87 0.50 0.80 0.00 0.00 

LP3 33 0.70 0.65 0.00 0.00 0.48 0.85 0.39 0.82 0.00 0.00 

UP4 27 0.52 0.43a 0.00 0.03 0.19 0.80 0.10 0.67 0.00 0.00 

LP4 30 0.66 0.64 0.00 0.00 0.48 0.82 0.38 0.82 0.00 0.00 

UM1 25 0.66 0.72 0.00 0.00 0.35 0.86 0.52 0.88 0.00 0.00 

LM1 26 0.44a 0.67 0.02 0.00 0.11 0.69 0.47 0.85 0.00 0.00 

UM2 27 0.72 0.76 0.00 0.00 0.54 0.87 0.61 0.88 0.00 0.00 

LM2 30 0.71 0.74 0.00 0.00 0.44 0.85 0.55 0.87 0.00 0.00 

*Pearson coefficient test was performed for samples > 20 
a Correlation is significant at p > 0.05, all others at p > 0.001 
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Fig. 6.9. Scatterplot suggesting a positive linear relationship between MD and RV 

measurements. The linear regression line, its equation, and R2 value are shown. The regression 

analysis shows that 75% of RV measurements can be predicted from the 2D MD cervical 

measurements (R2 = 0.75).   

 

 

Fig. 6.10. Scatterplot suggesting a positive linear relation between BL and RV measurements. 

The linear regression line, its equation, and R2 value are shown. The regression analysis shows 

that 66% of RV measurements can be predicted from 2D BL cervical measurements (R2 = 

0.75).   
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Pearson correlation results and scatter plots also showed a very high positive 

correlation between 2D and 3D MD and BL cervical measurements (Table 6.26, Fig 

6.11, 6.12). The correlation between MD measurements ranged from 0.92 to 0.99; with 

95% confidence interval ranging from 0.84 to 1.00. The correlation between BL 

measurements also ranged from 0.92 to 0.99; with the 95% confidence interval ranging 

from 0.81 to 1.00.   

  

The regression analysis also showed a perfect linear relationship between 2D and 3D 

cervical measurements. The R2 values of 1 and 0.99 for MD and BL measurements 

showed that 100% and 99% of the 3D MD and BL measurements could be predicted 

from the 2D MD and BL measurements, respectively (Fig. 6.8).  

 

Table 6.26. Matrix of Pearson correlation coefficient between 2D cervical and 3D cervical 

measurements for all teeth: original and bootstrap samples. 

Toot

h 

 Original sample Bootstrap sample 

 N* Coefficient p-value** Confidence limits (95%) Bias 

  MD BL MD BL MD BL MD BL 

      Lower Uppe

r 

Lower Upper   

UI1 21 0.97 0.98 0.00 0.00 0.94 0.99 0.95 0.99 0.00 0.00 

LI1 23 0.92 0.92 0.00 0.00 0.85 0.97 0.86 0.96 0.00 0.00 

UI2 20 0.94 0.96 0.00 0.00 084 0.99 0.93 098 0.00 0.00 

LI2 24 0.96 0.92 0.00 0.00 0.92 0.98 0.81 0.97 0.00 0.00 

UC 33 0.98 0.98 0.00 0.00 0.97 0.99 0.97 0.99 0.00 0.00 

LC 30 0.96 0.98 0.00 0.00 0.92 0.98 0.97 0.99 0.00 0.00 

UP3 30 0.96 0.99 0.00 0.00 0.93 0.98 0.97 0.99 0.00 0.00 

LP3 34 0.95 0.96 0.00 0.00 0.90 0.98 0.92 0.98 0.00 0.00 

UP4 29 0.95 0.99 0.00 0.00 0.90 0.97 0.98 1.00 0.00 0.00 

LP4 32 0.95 0.97 0.00 0.00 0.91 0.98 0.94 0.99 0.00 0.00 

UM1 25 0.96 0.98 0.00 0.00 0.93 0.98 0.96 0.99 0.00 0.00 

LM1 28 0.96 0.98 0.00 0.00 0.92 0.98 0.94 0.99 0.00 0.00 

UM2 28 0.99 0.99 0.00 0.00 0.97 0.99 0.97 1.00 0.00 0.00 

LM2 35 0.98 0.98 0.00 0.00 0.97 0.99 0.96 0.99 0.00 0.00 

LM3 21 0.99 0.98 0.00 0.00 0.97 1.00 0.96 0.99 0.00 0.00 

*Pearson coefficient test was performed for samples > 20. 

** Correlation is significant at p > 0.01 for all measurements. 
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Fig. 6.11. Scatterplot suggesting a very high positive linear relation between 2D and 3D 

cervical MD measurements. The linear regression line, its equation, and R2 value are shown. 

The regression analysis shows that 100% of the 3D MD measurements can be predicted from 

2D MD cervical measurements (R2 = 1.00).   

 

 

Fig. 6.12. Scatterplot suggesting a very high positive linear relation between 2D and 3D 

cervical BL measurements. The linear regression line, its equation, and R2 value are shown. 

The regression analysis shows that 99% of the 3D BL measurements can be predicted from 

2D BL cervical measurements (R2 = 0.99).   
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6.4.3.8. Discriminant Function Analysis 

 

Direct and stepwise discriminant function analysis was used to assess the applicability 

of 2D cervical, 3D cervical and RV measurements in sex estimation, and also to create 

population-specific functions. The analysis was also carried out separately for each 

measurement (univariate discriminant function analysis), so that the applicability of 

the technique is increased where dentition is not well preserved. Measurements that 

showed no significant differences between males and females, including UM3 for both 

2D and 3D cervical measurements and LM3 for 3D cervical measurements, were 

removed from the discriminant function analysis, as they did not improve the 

discrimination power of the analysis. UM3 RV measurements were also removed from 

the discriminant function analysis due to the very small sample size and their high 

degree of variation in size.  

 

6.4.3.8.1. Direct Discriminant Analysis 

 

Direct discriminant analysis was performed separately for each tooth using 2D and 3D 

cervical MD and BL measurements. Tables 6.27 and 6.28 show the tooth variables, 

Wilks’s lambda, F-value, degree of freedom (df), and unstandardized coefficient for 

each function. Wilks’s lambda indicates which variable contribute significantly to 

discriminant analysis and determines the order in which the variables entered the 

analysis. Wilks’s lambda ranges from the values 0 to 1, and the closer the Wilks’s 

lambda value is to 0, the contribution of the variable is more to the discriminant 

function. The F-value gives an indication of the contribution of variables entered in 

the equation to separate sexes (Mukhopadhyay, 2009). Degree of freedom (df) is “the 

number of independent pieces of information that go into the estimate of a parameter” 

(Cardinal and Aitken, 2006, p. 416). Unstandardized coefficient is used to calculate 

the discriminant score which is assigned to each sex. The scores vary from one case to 

another, determined by the single variable or the combination of variables in the 

function. Group centroids are the mean discriminant scores for each sex, and can be 

used to calculate the degree of separation between males and females. A sectioning 

point is the average of two group centroids and separates the two sexes. The sex of an 
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individual can be estimated by multiplying the tooth measurement with its respective 

unstandardized coefficient and adding it to the constant. In the present study, the 

sectioning point was set to zero for all the functions, therefore if the value obtained is 

greater than the sectioning point of zero, the individual is considered male, and if less 

than zero, the individual is considered female (Klepinger, 2006). Depending on how 

close the individual is to the sectioning point and which information the centroids 

provide, the reliability of sex assessment is determined. In the classification function, 

it is more likely for the male group to have positive scores and the female group to 

have negative scores (see Tables 6.27, 6.28). The discriminant function thus shows 

that when tooth dimension increases (above the mean) it means that the individual will 

most probably get a positive score, and therefore will fit the male group pattern. On 

the contrary, when tooth dimension decreases (below the mean), it indicates the female 

group. Therefore, the closer the dimension value is to one of the centroids, the greater 

the reliability of the sex assignment. The probability of correct classification of an 

individual is lower when the dimension value is close to the sectioning point, because 

it is an area in which the two groups overlap.  

 

F 1 to 15 (Table 6.27) demonstrate the results of direct discriminant function analysis 

using 2D cervical measurements of each tooth separately, and F 16 to 29 demonstrate 

the results of 3D cervical measurements (Table 6.28). Classification accuracy of each 

function for 2D and 3D cervical measurements is presented in Table 6.29.  

 

 

 

 

 

 

 

 

 

 

https://www.google.co.uk/search?tbo=p&tbm=bks&q=inauthor:%22Linda+L.+Klepinger%22
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Table 6.27. Direct discriminant function analysis of 2D cervical MD and BL measurements 

of all teeth 

Variables a 
Wilks’s 

lambda * 
F b df 

Unstandardized 

coefficient 

F1: UI1     

MD 0.80 12.25c 1,50 0.82 

BL 0.65 27.14 1,50 2.33 

Constant    −19.74 

F2: LI1     

MD 0.62 45.43 1,73 4.2 

BL 0.74 26.17 1,73 0.99 

Constant    −20.21 

F3: UI2     

MD 0.78 14.91 1,53 0.95 

BL 0.69 23.66 1,53 1.99 

Constant    −15.84 

F4: LI2     

MD 0.66 46.18 1,89 2.91 

BL 0.77 26.47 1,89 1.54 

Constant    −20.51 

F5: UC     

MD 0.52 75.45 1,81 1.88 

BL 0.58 59.26 1,81 0.95 

Constant    −17.93 

F6: LC     

MD 0.57 74.08 1,99 1.69 

BL 0.62 60.91 1,99 0.86 

Constant    −15.42 

F7: UP3     

MD 0.66 44.87 1,85 3.05 

BL 0.86 13.46 1,85 −0.04 

Constant    −13.57 

F8: LP3     

MD 0.61 68.53 1,108 2.89 

BL 0.71 43.26 1,108 0.45 

Constant    −16.74 

F9: UP4     

MD 0.67 39.39 1,81 2.44 

BL 0.77 24.81 1,81 0.46 

Constant    −15.2 

F10: LP4     

MD 0.70 43.69 1,101 2.37 

BL 0.81 23.04 1,101 0.56 

Constant    −15.86 

F11: UM1     

MD 0.71 33.83 1,81 1.32 

BL 0.68 38.94 1,81 1.32 

Constant    −23.27 

 

Continued 
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Table 6.27 continued 

 

 

Variables a 
Wilks’s 

lambda * F b df 
Unstandardized 

coefficient 

F12: LM1     

MD 0.76 28.99 1,93 0.96 

BL 0.71 37.28 1,93 1.29 

Constant    −19.79 

F13: UM2     

MD 0.59 54.76 1,80 0.96 

BL 0.56 62.11 1,80 1.05 

Constant    −17.61 

F14: LM2     

MD 0.64 59.35 1,104 0.99 

BL 0.61 65.46 1,104 1.15 

Constant    −18.33 

F15: LM3 d     

MD 0.87 10.05 1,66 0.54 

BL 0.74 23.16 1,66 1.69 

Constant      −18.12 

*Method: Wilks’s lambda with F: 3.84 to enter and F: 2.71 to remove 
a The sectioning point for all the functions is zero 
b F values statistically significant at p ≤ 0.000 
c F value statistically significant at p ≤ 0.001 

d UM3 was excluded from the discriminant function analysis 
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Table 6.28. Direct discriminant function analysis of 3D cervical MD and BL measurements 

of all teeth 

Variables a 
Wilks’s 

lambda* * F b df 
Unstandardized 

coefficient 

F16: UI1     

MD 0.62 12.17c 1,20 0.85 

BL 0.43 26.04 1,20 2.4 

Constant    −20.45 

F17: LI1     

MD 0.30 58.87 1,25 7.71 

BL 0.53 21.86 1,25 −0.15 

Constant    −26.3 

F18: UI2     

MD 0.29 49.13 1,20 2.76 

BL 0.49 21.11 1,20 1.33 

Constant    −20.15 

F19: LI2     

MD 0.42 32.58 1,24 1.68 

BL 0.37 41.18 1,24 3.16 

Constant    −24.62 

F20: UC     

MD 0.27 88.39 1,33 2.97 

BL 0.47 37.07 1,33 0.63 

Constant    −20.94 

F21: LC     

MD 0.30 66.04 1,28 2.5 

BL 0.40 41.9 1,28 0.67 

Constant    −17.8 

F22: UP3     

MD 0.37 55.18 1,33 3.25 

BL 0.68 15.8 1,33 0.4 

Constant    −18.02 

F23: LP3     

MD 0.44 41.43 1,32 2.51 

BL 0.52 29.47 1,32 1.4 

Constant    −21.06 

F24: UP4     

MD 0.49 30.28 1,29 2.73 

BL 0.57 21.94 1,29 0.75 

Constant    −18.41 

F25: LP4     

MD 0.54 24.88 1,29 2.72 

BL 0.81 6.97d 1,29 0.26 

Constant    −15.3 

F26: UM1     

MD 0.38 44.92 1,28 3.16 

BL 0.64 16.01 1,28 0.53 

Constant    −29.68 

F27: LM1     

MD 0.66 14.19e 1,28 1.14 

BL 0.59 19.77 1,28 1.77 

Constant    −25.21 

 

Continued 
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Table 6.28 continued 

 
 

Variables a 
Wilks’s 

lambda* * F b df 
Unstandardized 

coefficient 

F28: UM2     

MD 0.60 18.33 1,28 0.77 

BL 0.53 24.67 1,28 1.26 

Constant    −18.46 

F29: LM2f     

MD 0.56 26.63 1,34 1.33 

BL 0.61 22.15 1,34 0.95 

Constant      −19.57 

*Method: Wilks’s lambda with F: 3.84 to enter and F: 2.71 to remove 
a The sectioning point for all the functions is zero 
b F values statistically significant at p ≤ 0.000 for all variables 
c F value statistically significant at p ≤ 0.002, d p ≤ 0.013, e p ≤ 0.001 
f UM3 and LM3 were excluded from the discriminant function analysis 

 

 

As can be seen in Table 6.29, accuracy ranges from 80% to 94.1% in males, and 58.3% 

to 81.8% in females, and total classification accuracy ranges from 75.9% to 87.9% for 

2D cervical measurements. The best classification accuracy was achieved with F4 

(87.9%) and F6 (86.1%), which used MD and BL measurements of LI2 and LC 

respectively. LI2 (F4: 87.9%) provided the highest accuracy among anterior teeth, 

while LM2 (F14: 83%) provided the highest accuracy rate among posterior teeth. In 

all functions the accuracy in males was significantly greater than in females. Canines 

and M2 also showed a very high percentage of sexual dimorphism, and significant 

differences between male and female measurements (Tables 6.21, 6.23).  

 

3D cervical measurements provided significantly better sex classification percentages, 

particularly in females. For these measurements, accuracy ranges from 81.3% to 100% 

in males, and 71.4% to 100% in females, and total classification accuracy ranges from 

82.4% to 100%. The functions with the highest classification accuracy were F18 

(100%) and F20 (97.1%), which used the 3D cervical MD and BL measurements of 

UI2 and UC, respectively (Table 6.29). These two teeth also showed the highest sexual 

dimorphism percentages among all teeth (Table 6.22). In both 2D and 3D cervical 

measurements I2 and canines achieved the highest accuracy rates, however for 2D 

cervical measurements the mandibular teeth were used in the analysis, and in the 3D 

cervical measurements the maxillary teeth were used. UI2 (F18: 100%) achieved the 
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best classification results among anterior teeth and UM1 (F26: 93.3%) achieved the 

best classification results among posterior teeth. In contrast to the 2D cervical 

measurements, in most 3D cervical functions the accuracy in females was greater than 

in males (Table 6.29). 

 

Table 6.29: Classification accuracy of original and cross validated samples: 2D and 3D 

cervical measurements – direct discriminant analysis 

Functions Predicted Group Membership N 

 2D cervical measurements  

 Original % Cross-validated %  

 Male Female Total Male Female Total  

F1:UI1 80 72.7 76.9 80 72.7 76.9 52 

F2:LI1 89.6 77.8 85.3 89.6 77.8 85.3 75 

F3:UI2 94.1 66.7 83.6 91.2 66.7 81.8 55 

F4:LI2 91.5 81.3 87.9 91.5 78.1 86.8 91 

F5:UC 88 81.8 85.5 88 81.8 85.5 83 

F6:LC 90.9 77.1 86.1 90.9 77.1 86.1 101 

F7:UP3 82.7 65.7 75.9 82.7 62.9 74.7 87 

F8:LP3 83.8 69 78.2 83.8 69 78.2 110 

F9:UP4 81.6 70.6 77.1 81.6 67.6 75.9 83 

F10:LP4 86.6 63.9 78.6 86.6 61.1 77.7 103 

F11:UM1 86 72.7 80.7 84 69.7 78.3 83 

F12:LM1 87.1 60.6 77.9 87.1 60.6 77.9 95 

F13UM2 86.5 76.7 82.9 86.5 73.3 81.7 82 

F14:LM2 86.8 76.3 83 86.8 73.7 82.1 106 

F15:LM3 86.4 58.3 76.5 84.1 54.2 73.5 68 

 3D cervical measurements  

F16:UI1 100 71.4 90.9 93.3 71.4 86.4 22 

F17:LI1 86.7 100 92.6 86.7 100 92.6 27 

F18:UI2 100 100 100 100 100 100 22 

F19:LI2 86.7 100 92.3 86.7 100 92.3 26 

F20:UC 95 100 97.1 95 100 97.1 35 

F21:LC 94.7 100 96.7 94.7 100 96.7 30 

F22:UP3 85.7 92.9 88.6 85.7 92.9 88.6 35 

F23:LP3 85 78.6 82.4 85 78.6 82.4 34 

F24:UP4 81.3 86.7 83.9 81.3 86.7 83.9 31 

F25:LP4 90 72.7 83.9 85 72.7 80.6 31 

F26:UM1 88.2 100 93.3 88.2 100 93.3 30 

F27:LM1 82.4 84.6 83.3 82.4 76.9 80 30 

F28:UM2 90.5 88.9 90 90.5 88.9 90 30 

F29:LM2 85.7 86.7 86.1 85.7 80 83.3 36 

 

Cross-validation classification rates were close to the original accuracy in all cases for 

both 2D and 3D cervical measurements (Table 6.29). The bootstrap sample (n = 1,000) 

provided results similar to the original sample for 2D cervical measurements and very 
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close to the original sample for 3D cervical measurements (see Table 10, Appendix 

A). 

 

6.4.3.8.2. Stepwise Discriminant Analysis 

 

After the direct discriminant function analysis, a stepwise analysis was performed to 

determine which variables best discriminated between males and females. Different 

combinations of variables were used for each set of measurements.  

 

F 30 to 38 (Table 6.30) demonstrate the results of stepwise discriminant function 

analysis using 2D cervical measurements. As mentioned above, UM3 was removed 

from the discriminant analysis and LM3 was also excluded from F34 and F38 to 

increase the sample size. F 30-34 show the results of stepwise discriminant analysis 

using the cervical measurements of each tooth type separately. UC and LC were also 

added to F 35-38 to determine if the accuracy rate would increase (Table 6.30). 

 

Table 6.30. Stepwise discriminant function analysis of 2D cervical MD and BL 

measurements of all teeth 

Variables a 
Wilks’s 

lambda*  F b df 
Unstandardized 

coefficient 

F30: Incisors      

MDLI2 0.53 22.05 1,25 5.25 

BLLI2 0.25 36.74 2,24 2.97 

BLUI1 0.19 32.10 3,23 1.75 

Constant    −49.04 

F31: Canines     

MDUC 0.48 67.47 1,63 1.9 

BLUC 0.45 51.70 2,62 0.85 

Constant    −17.26 

F32: Premolars     

MDUP3 0.65 26.92 1,50 3.13 

Constant    −14.25 

F33: Molars c     

MDUM2 0.69 15.42 1,34 1.69 

Constant    −12.61 

F34: Molars – LM3c      

MDUM2 0.64 27.29 1,49 1.20 

BLUM1 0.55 19.92 2,48 1.29 

Constant    −22 

 

 

Continued 
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Table 6.30 continued  

 

 

Variables a 
Wilks’s 

lambda*  F b df 
Unstandardized 

coefficient 

F35: Incisors + Canines     

MDLI2 0.25 28.50 2,19 3.98 

BLLC 0.18 28.13 3,18 2.14 

BLUI1 0.14 36.09 3,18 2.05 

Constant    −44.29 

F36: Premolars + Canines     

MDUC 0.56 27.30 1,35 1.68 

MDUP3 0.50 16.86 2,34 1.81 

Constant    −17.88 

F37: Molars c + Canines     

MDUC 0.58 17.94 1,25 2.60 

Constant    −14.9 

F38: Molars – LM3 + 

Canines 
    

MDUC 0.52 32.67 1,36 2.82 

Constant    −16.20 

*Method: Wilks’s lambda with F: 3.84 to enter and F: 2.71 to remove 
 a The sectioning point for all the functions is zero 
b F values statistically significant at p ≤ 0.000 for all variables 
 c UM3 was excluded from the discriminant function analysis 

 

 

Classification accuracy of stepwise discriminant functions for 2D cervical 

measurements is presented in Table 6.31. Accuracy ranges from 79.3% to 100% in 

males and 45.4% to 100% in females, and the total accuracy rate ranges from 75-100%. 

Similar to the direct discriminant analysis, in all functions accuracy was greater in 

males than in females. The best classification accuracy (100%) was achieved with F30 

and F35, which used the anterior teeth. The combination of maxillary and mandibular 

molars (excluding M3) with maxillary and mandibular canines (F38) gave the next 

best classification (92.1%), followed by maxillary and mandibular canines (F31: 

87.7%). The canines, which showed the highest percentage of sexual dimorphism 

(Table 6.24), were added to F 35 to 38. Classification accuracy significantly improved 

in all functions, particularly in F37 (Table 6.31). Mandibular M3 was removed from 

the analysis, which increased the sample size to 51 and 38, and the classification 

accuracy to 82.4% and 92.1% for F 34 and 38, respectively. As can be seen in Table 

6.30, UC figured in 3 of the 4 functions combined with canines. Of these 3, 2 of them 

utilised MDUC measurements alone (F37, F38), and in the other function (F36), 

MDUC entered into the analysis first.  
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Cross-validation accuracy was not significantly different from the original accuracy 

(Table 6.31). The bootstrap sample (n = 1,000) also provided results similar to the 

original sample. 

 

F 39 to 48 (Table 6.32) demonstrate the results of stepwise discriminant function 

analysis using 3D cervical measurements. As mentioned above, M3 was removed from 

the sex estimation analysis. F 39 to 44 show the results of stepwise discriminant 

analysis using the cervical measurements of each tooth type separately. The variables 

were selected based on tooth type and their position in the dental arcade 

(maxillary/mandibular). As mentioned above, discriminant analysis was performed for 

samples larger than 20 individuals, therefore it was not possible to use a combination 

of maxillary and mandibular teeth of every tooth type for sex estimation, as was done 

in the 3D measurements. In addition, due to a larger sample size, only UC was added 

to F 45 to 48 to determine if the accuracy rate would increase (Table 6.32). 
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Table 6.31: Classification accuracy of original and cross validated samples: 2D cervical, 3D 

cervical, and RV measurements – stepwise discriminant analysis 

Functions Predicted Group Membership N 

 2D cervical measurements  

 Original % Cross-validated %  

 Male Female Total Male Female Total  

F30: Incisors 100 100 100 100 100 100 27 

F31: Canines 92.5 80 87.7 90 76.9 84.6 65 

F32: Premolars 79.3 69.6 75 79.3 69.6 75 52 

F33: Molars 88 45.4 75 88 45.5 75 36 

F34: Molars – LM3 85.3 76.5 82.4 85.3 76.5 82.4 51 

F35: Incisors + 

Canines 
100 100 100 100 100 100 22 

F36: Premolars + 

Canines 
87.5 76.9 83.8 83.3 76.9 81.1 37 

F37: Molars + Canines 95 71.4 88.9 95 71.4 88.9 27 

F38 :Molars – LM3 + 

Canines  
96.4 80 92.1 96.4 80 92.1 38 

 3D cervical measurements  

F39: L Incisors 100 100 100 100 100 100 23 

F40: Canines 100 100 100 100 100 100 20 

F41: U Premolars 100 100 100 100 100 100 23 

F42: L Premolars 88.2 72.7 82.1 88.2 72.7 82.1 28 

F43: U Molars 92.3 100 95.2 92.3 100 95.2 21 

F44: L Molars 86.7 76.9 82.1 80 76.9 78.6 28 

F45: U Premolars + U 

Canine 
100 100 100 100 100 100 21 

F46: L Premolars + U 

Canines 
91.7 100 95 91.7 100 95 20 

F47: U Molars + U 

Canine 
100 100 100 100 100 100 20 

F48: L Molars + U 

Canine 
90.9 90 90.5 81.8 90 85.7 21 

 RV measurements  

F49: L Incisors 100 90 96.3 100 90 96.3 27 

F50: Canines 100 100 100 100 100 100 24 

F51: All Premolars 100 100 100 100 100 100 22 

F52: U Premolars 94.1 93.3 93.8 94.1 93.3 93.8 32 

F53: L Premolars 95 80 90 95 80 90 30 

F54: U Molars 100 87.5 95.7 100 87.5 95.7 23 

F55: L Molars 94.7 81.8 90 94.7 81.8 90 30 

F56: L Incisors + U 

Canine 
100 100 100 100 100 100 22 

F57: U Premolars + U 

Canine 
93.3 100 96.6 93.3 100 96.6 29 

F58: L Premolars + U 

Canine 
100 100 100 100 100 100 21 

F59: U Molars + U 

Canine  
100 100 100 100 100 100 22 

F60: L Molars + U 

Canine 
100 100 100 100 100 100 22 
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Classification accuracy of stepwise discriminant functions for 3D cervical 

measurements is presented in Table 6.31. Accuracy ranges from 88.2% to 100% in 

males and 72.7% to 100% in females, and the total accuracy rate ranges from 82.1% 

to 100%. F 39-41, 45 and 47 display the highest overall accuracy rate (100%) for both 

original and cross-validated data. The next best classification accuracy was achieved 

with F43 (95.2%) and F46 (95%), which used a combination of maxillary and 

mandibular M1 and M2, and a combination of LP3, LP4 and UC for sex estimation, 

respectively. Similar to the 2D cervical measurements, adding UC to F 45-48 

significantly improved the classification accuracy, particularly for F46 (Table 5.31). 

Similar to the 2D cervical measurements, UC was also entered in all these functions 

(Table 6.32). In general, half of the functions provided an accuracy rate of 100%, for 

both original and cross-validated data, in 3 of which UC was used. Except for the 

functions with 100% total accuracy rates, males provided greater accuracy rates in 3 

functions (42, 44, 48), while females provided greater accuracy rates (100%) in 2 

functions (46, 43) (Table 6.31).  

 

Cross-validation accuracy was not significantly different from the original accuracy 

(Table 6.31). The bootstrap sample (n = 1,000) also provided results similar to the 

original sample. 
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Table 6.32. Stepwise discriminant function analysis of 3D cervical MD and BL 

measurements of all teeth 

Variables a 
Wilks’s 

lambda* * F b Df 
Unstandardized 

coefficient 

F39: L Incisors      

MDLI1 0.43 28.33 1,21 5.29 

MDLI2 0.21 38.48 2,20 3.36 

Constant    −31.43 

F40: Canines     

MDLC 0.21 68.71 1,18 2.50 

MDUC 0.17 56.58 2.17 1.80 

Constant    −22.84 

F41: U Premolars     

MDUP3 0.25 62.85 1,21 4.70 

Constant    −21.70 

 
F42: L Premolars     

MDLP3 0.43 34.98 1,26 3.37 

Constant    −15.92 

F43: U Molars c     

MDUM1 0.34 36.74 1,19 4.17 

Constant    −32.90 

F44: L Molars d     

MDLM2 0.47 29.56 1,26 2.10 

Constant    −18.58 

F45: U Premolars + U Canine     

MDUP3 0.26 53.72 1,19 2.81 

MDUC 0.19 38.45 2,18 2.21 

Constant    −25.14 

F46: L Premolars + U Canine     

MDUC 0.23 59.93 1,18 2.80 

MDLP3 0.19 22.47 2,17 1.62 

Constant    −22.88 

F47: U Molars c + U Canines     

MDUC 0.32 37.74 1,18 2.35 

MDUM1 0.26 24.48 2,17 2.14 

Constant    −30.24 

F48: L Molars d + U Canine     

MDUC 0.26 55.43 1,19 3.37 

Constant    −18.23 

*Method: Wilks’s lambda with F: 3.84 to enter and F: 2.71 to remove 
a The sectioning point for all the functions is zero 
b F values statistically significant at p ≤ 0.000 for all variables 
c UM3 was excluded from the discriminant function analysis 
d LM3 was excluded from discriminant function analysis 
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F 49 to 60 (Table 6.33) demonstrate the results of the stepwise discriminant function 

analysis using RV measurements. As mentioned above, UM3 was removed from the 

sex estimation analysis due to the small number of data. F 49-55 show the results of 

the stepwise discriminant analysis using the RV measurements of each tooth type. Due 

to the larger number of UC in comparison with LC, UC was added to functions 56-60 

to examine whether classification accuracy would increase (Table 6.32).  

 

Table 6.31 shows the classification accuracy of all functions. Accuracy ranges from 

93.3% to 100% in males and 80% to 100% in females, and the total accuracy rate 

ranges from 90-100%. All of the stepwise discriminant functions provided 

classification accuracy of over 90%, with an accuracy rate of 100% for half of the 

functions (F 50, 51, 56, 58-60). The combination of UP3 and UP4 with the UC (F57) 

gave the next best classification (96.6%), followed by the LI1 and LI2 (F49: 96.3%). 

By adding the UC to F 56 to 60, classification accuracy was significantly improved 

and all of the functions provided an accuracy rate of 100%, except F57 (96.6%) (Table 

6.31). In most functions, accuracy in males was greater than in females. As can be seen 

in Table 6.33, UC figured in all of the five functions combined with the canine. Of 

these five, four of them used the RV measurement of UC alone (F57-60) and in the 

other function, combined with mandibular incisors (F56), UC entered into the analysis 

first. The same results were observed in the stepwise discriminant function analysis of 

2D and 3D cervical measurements. It shows that the canine, especially the UC, is the 

tooth with the greatest degree of sexual dimorphism. 

 

Cross validation accuracy was close to the original classification accuracy in all cases 

(Table 6.31). The bootstrap sample (n = 1,000) also provided results similar to the 

original sample. 
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Table 6.33. Stepwise discriminant function analysis of RV measurements of all teeth 

Variables a 
Wilks’s 

lambda* F b Df 
Unstandardized 

coefficient 

F49: L Incisors      

LI2 0.22 88.64 1,25 0.07 

Constant    −9.34 

F50: Canines     

UC 0.11 177.85 1,22 0.04 

Constant    −8.50 

F51: All 

Premolars 
    

UP3 0.22 69.55 1,20 0.03 

UP4 0.17 59.27 2,19 0.03 

Constant    −9.19 

F52: U 

Premolars 
    

UP4 0.30 68.77 1,30 0.03 

UP3 0.32 43.13 2,29 0.02 

Constant    −8.15 

F53: L 

Premolars 

    

LP3 0.29 71.45 1,29 0.06 

Constant    −9.27 

F54: U Molars c     

UM2 0.29 51.37 1,21 0.02 

Constant    −7.41 

F55: L Molars      

LM1 0.32 59.11 1,28 0.02 

Constant    −10.00 

F56: L Incisors 

+ U Canine 

    

UC 0.12 146.17 1,20 0.02 

LI2 0.09 97.67 2,19 0.05 

Constant    −11.53 

F57: U 

Premolars + U 

Canine 

    

UC 0.14 170.61 1,27 0.03 

Constant    −7.54 

F58: L 

Premolars + U 

Canine 

    

UC 0.07 249.03 1,19 0.04 

Constant    −9.82 

F59: U Molars c 

+ U Canine 

    

UC 0.20 81.56 1,20 0.03 

Constant    −6.61 

F60: L Molars + 

U Canine 

    

UC 0.09 200.48 1,20 0.04 

Constant      −9.04 

* Method: Wilks’s lambda with F: 3.84 to enter and F: 2.71 to remove 
a The sectioning point for all functions is zero 
b F values statistically significant at p ≤ 0.000 for all variables 
c UM3 was excluded from the discriminant function analysis 
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As mentioned above, stepwise discriminant analysis was carried out using a 

combination of 2D cervical and RV measurements to determine the most significant 

variable in sex estimation, and also to examine whether this would improve 

classification accuracy. The RV measurements of each tooth were added to the 2D 

cervical measurements of the same tooth, and were used for sex estimation. Due to the 

small sample size as well as their high degree of variation in size, M3 was excluded 

from the analysis. Since the analysis was performed only for samples with more than 

20 individuals, maxillary incisors were removed from the analysis. F 61 to 72 

demonstrate the results of the stepwise discriminant function analysis using a 

combination of 2D cervical and RV measurements for each tooth (Table 6.34).  

 

Table 6.34. Stepwise discriminant function analysis of 2D cervical and RV measurements 

combined 

Variables a 
Wilks’s 

lambda* F b df 
Unstandardized 

coefficient 

F61: LI1      

RV 0.34 40.53 1,21 0.09 

MD 0.20 39.00 2,20 7.47 

BL 0.14 39.30 3,19 −3.61 

Constant    −15.7 

F62: LI2     

RV 0.18 94.49 1,21 0.07 

Constant    −9.09 

F63: UC     

RV 0.19 122 1,28 0.03 

Constant    −6.41 

F64: LC     

RV 0.36 48.65 1,27 0.03 

Constant    −6.25 

F65: UP3     

RV 0.33 57.25 1,28 0.03 

MD 0.28 34.00 2,27 1.43 

Constant    −11.36 

F66: LP3     

RV 0.25 92.27 1,31 0.08 

BL 0.21 57.52 2,30 −1.39 

Constant    −2.78 

F67: UP4     

RV 0.34 49.44 1,25 0.04 

BL 0.27 33.05 2,24 0.91 

Constant    −13.49 

 

Continued 
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Table 6.34 continued 

 

 

Variables a 
Wilks’s 

lambda* F b df 
Unstandardized 

coefficient 

F68: LP4     

RV 0.36 49.96 1,28 0.04 

Constant    −6.86 

F69: UM1     

RV 0.41 33.29 1,23 0.02 

Constant    −7.66 

F70: LM1     

RV 0.25 71.23 1,24 0.03 

Constant    −10.79 

F71: UM2     

RV 0.37 42.47 1,25 0.02 

Constant    −6.4 

F72: LM2     

RV 0.37 46.82 1,28 0.02 

Constant      −7.3 

* Method: Wilks’s lambda with F: 3.84 to enter and F: 2.71 to remove 
a The sectioning point for all functions is zero 
b F values statistically significant at p ≤ 0.000 for all variables 

 

Table 6.35 shows the classification accuracy of all functions. Accuracy ranged from 

88.9% to 100% in males and 63.6% to 100% in females, and the total accuracy rate 

ranges from 83.3% to 100%. The best classification accuracy (100%) was achieved 

with F61, which used a combination of 2D cervical and RV measurements of LI1. UC 

(F63) with 96.7% accuracy rate provided the next best classification, followed by LI2 

(F62). The variables used for this stepwise analysis were similar to those used for 2D 

cervical direct discriminant analysis. As can be seen in Tables 6.29 and 6.35, 

classification accuracy was significantly improved by adding the RV measurement to 

the 2D cervical measurement of each tooth. In all 11 functions, RV measurement 

entered first. Of these 11, 8 of them utilised RV alone for sex estimation (Table 6.34). 

It shows that RV measurements are very useful for sex estimation and improve 

classification accuracy. In most functions accuracy in males was greater than in 

females, similar to the results obtained from 2D cervical and RV measurements.  

 

Cross validation accuracy was close to the original classification accuracy in all cases 

(Table 6.35). The bootstrap sample (n = 1,000) also provided results similar to the 

original sample. 
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Table 6.35: Classification accuracy of original and cross validated samples: 2D cervical and 

RV measurements combined – stepwise discriminant analysis 

Functions Predicted Group Membership N 

 Original % Cross-validated %  

 Male Female Total Male Female Total  

F61: LI1 100 100 100 100 100 100 23 

F62: LI2 100 88.9 95.7 100 88.9 95.7 23 

F63: UC 93.8 100 96.7 93.8 100 96.7 30 

F64: LC 88.9 90.9 89.7 88.9 90.9 89.7 29 

F65: UP3 100 84.6 93.3 100 84.6 93.3 30 

F66: LP3 95 92.3 93.9 95 92.3 93.9 33 

F67: UP4 92.3 92.9 92.6 92.3 92.9 92.6 27 

F68: LP4 94.7 63.6 83.3 94.7 63.6 83.3 30 

F69: UM1 92.9 81.8 88 92.9 81.8 88 25 

F70: LM1 100 100 100 100 100 100 26 

F71: UM2 94.1 80 88.9 88.2 80 85.2 27 

F72: LM2 94.1 76.9 86.7 94.1 76.9 86.7 30 

 

6.4.3.8.3. Univariate Discriminant Analysis 

 

Univariate discriminant function analysis was performed for each tooth and 

measurement separately. As mentioned above, UM3 was removed from the analysis 

for 2D cervical, 3D cervical and RV measurements. In addition, the 3D MDLM3, 

which showed no significant differences between the sexes, was also removed from 

the analysis. 

 

F 73 to 102 demonstrate the results of univariate discriminant function analysis using 

2D MD and BL measurements (Table 6.36), F 103 to 131 demonstrate the results of 

3D cervical MD and BL measurements (Table 6.38), and finally F132 to 142 

demonstrate the results of stepwise discriminant function analysis using RV 

measurements (Table 6.40). 

 

Classification accuracy of univariate discriminant functions for 2D cervical 

measurements is presented in Table 6.37. Accuracy ranges from 76.9% to 94.1% in 

males and 41.7% to 78.1% in females, and the total accuracy rate ranges from 70.7% 

to 86.8%. Only 11 functions out of 29 used function provided accuracy rate ≥ 80%. 

The best classification accuracy (86.8%) was achieved with F76, which used the 

MDLI2 measurement. MDLI1 (F74) gave the next best classification (84%), followed 
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by MDLC (F78: 83.3%). MDLI2 (F76: 86.8%) provided the highest classification 

accuracy among anterior teeth, while BLLM3 (F102: 80.9%) provided the highest 

classification accuracy among posterior teeth. In all functions, accuracy was 

significantly greater in males than in females. MD measurements provided higher 

accuracy rates in 24 of the functions. As can be seen in Table 6.37, BL measurements 

provided better classification results for all molar teeth except for UM1. In general, 

classification accuracy was higher when both MD and BL variables were used together 

(Tables 6.29 and 6.37). 

 

Table 6.36. Univariate discriminant function analysis of 2D cervical measurements 

Variables a 
Wilks’s 

lambda* 
F b Df 

Unstandardized 

coefficient 

MD     

F73: UI1 0.80 12.25 1,50 2.06 

Constant    −12.88 

F74: LI1 0.62 45.43 1,73 5.26 

Constant    −18.45 

F75: UI2 0.78 14.91 1,53 2.47 

Constant    −11.88 

F76: LI2 0.66 46.18 1,89 3.79 

Constant    −14.71 

F77: UC 0.51 79.23 1,82 2.75 

Constant    −15.38 

F78: LC 0.56 77.96 1,100 −1.18 

Constant    0.65 

F79: UP3 0.66 44.87 1,85 3.01 

Constant    −13.74 

F80: LP3 0.61 69.06 1,109 3.42 

Constant    −16.25 

F81: UP4 0.67 39.39 1,81 3.03 

Constant    −14.23 

F82: LP4 0.70 44.86 1,102 2.93 

Constant    −14.68 

F83: UM1 0.70 35.14 1,82 2.77 

Constant    −21.36 

F84: LM1 0.76 28.99 1,93 2.07 

Constant    −18.44 

 

 

 

 

 

Continued 
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Table 6.36 continued  

 
 

Variables a 
Wilks’s 

lambda* 
F b df 

Unstandardized 

coefficient 

F85: UM2 0.59 54.76 1,80 1.83 

Constant    −13.78 

F86: LM2 0.66 54.51 1,105 1.76 

Constant    −15.62 

F87: LM3 c 0.87 10.05 1,66 1.16 

Constant    −10.12 

BL     

F88: UI1 0.65 27.14 1,50 2.86 

Constant    −17.9 

F89: LI1 0.74 26.17 1,73 3.13 

Constant    −17.27 

F90: UI2 0.69 23.66 1,53 2.62 

Constant    −14.89 

F91: LI2 0.77 26.47 1,89 3.15 

Constant    −18.88 

F92: UC 0.58 59.26 1,81 2.09 

Constant    −16.36 

F93: LC 0.62 60.91 1,99 2.05 

Constant    −15.28 

F94: UP3 0.86 13.46 1,85 1.84 

Constant    −14.59 

F95: LP3 0.71 43.26 1,108 2.21 

Constant    −14.74 

F96: UP4  0.77 24.81 1,81 1.67 

Constant    −13.62 

F97: LP4  0.81 23.04 1,101 1.73 

Constant    −12.36 

F98: UM1 0.68 38.94 1,81 2.07 

Constant    −20.59 

F99: LM1 0.71 39.29 1,94 1.89 

Constant    −16.49 

F100: UM2 0.56 62.11 1,80 1.67 

Constant    −16.48 

F101: LM2 0.61 65.46 1,104 1.83 

Constant    −15.19 

F102: LM3 0.76 13.16 1,66 2.06 

Constant    −16.4 

* Method: Wilks’s lambda with F: 3.84 to enter and F: 2.71 to remove 
a The sectioning point for all the functions is zero 
b F values statistically significant at p ≤ 0.000 for all variables 
c UM3 was excluded from the discriminant function analysis 
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Table 6.37: Classification accuracy of original and cross validated samples: univariate 

discriminant analysis of 2D cervical measurements 

Functions Predicted Group Membership N 

 Original % Cross-validated %  

MD Male Female Total Male Female Total  

F73: UI1 83.3 50 69.2 83.3 50 69.2 52 

F74: LI1 89.6 74.1 84 89.6 74.1 84 75 

F75: UI2 94.1 61.9 81.8 91.2 61.9 80 55 

F76: LI2 91.5 78.1 86.8 91.5 78.1 86.8 91 

F77: UC 84 76.5 81 84 76.5 81 84 

F78: LC 87.9 75 83.3 87.9 75 83.3 102 

F79: UP3 82.7 62.9 74.7 82.7 62.9 74.7 87 

F80: LP3 84.1 73.8 80.2 84.1 69 78.4 111 

F81: UP4 79.6 70.6 75.9 79.6 70.6 75.9 83 

F82: LP4 89.7 55.6 77.9 89.7 55.6 77.9 104 

F83: UM1 86.3 63.6 77.4 86.3 63.6 77.4 84 

F84: LM1 87.1 57.6 76.8 87.1 57.6 76.8 95 

F85: UM2 84.6 66.7 78 84.6 66.7 78 82 

F86: LM2 88.4 63.2 79.4 88.4 63.2 79.4 107 

F87: LM3 93.2 54.2 79.4 93.2 54.2 79.4 68 

BL        

F88: UI1 93.2 54.2 79.4 93.2 54.2 79.4 68 

F89: LI1 90.9 62.5 80.9 90.9 62.5 80.9 68 

F90: UI2 88.2 66.7 80 88.2 66.7 80 55 

F91: LI2 89.8 59.4 79.1 89.8 59.4 79.1 91 

F92: UC 80 75.8 78.3 80 75.8 78.3 83 

F93: LC 87.9 65.7 80.2 87.9 65.7 80.2 101 

F94: UP3 76.9 48.6 65.5 76.9 48.6 65.5 87 

F95: LP3 83.8 54.8 72.7 82.4 54.8 71.8 110 

F96: UP4 79.6 58.8 71.1 79.6 58.8 71.1 83 

F97: LP4 88.1 41.7 71.8 86.6 41.7 70.9 103 

F98: UM1 82 60.6 73.5 82 60.6 73.5 83 

F99: LM1 91.9 55.9 79.2 91.9 55.9 79.2 96 

F100: UM2 82.7 76.7 80.5 82.7 76.7 80.5 82 

F101: LM2 89.7 73.7 84 89.7 73.7 84 106 

F102: LM3 90.9 62.5 80.9 90.9 62.5 80.9 68 
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Table 6.38. Univariate discriminant function analysis of 3D cervical measurements 

Variables a 
Wilks’s 

lambda* 
F b df 

Unstandardized 

coefficient 

MD     

F103: UI1 0.62 12.17 1,20 2.18 

Constant    −13.72 

F104: LI1 0.30 58.87 1,25 7.53 

Constant    −26.46 

F105: UI2 0.29 49.13 1,20 3.35 

Constant    −15.54 

F106: LI2 0.42 32.58 1,24 4.02 

Constant    −15.35 

F107: UC 0.27 88.39 1,33 3.5 

Constant    −19.04 

F108: LC 0.30 66.04 1,28 3.22 

Constant    −16.7 

F109: UP3 0.37 55.18 1,33 3.58 

Constant    −16.39 

F110: LP3 0.44 41.43 1,32 3.53 

Constant    −16.72 

F111: UP4 0.49 30.28 1,29 3.83 

Constant    −17.47 

F112: LP4 0.81 28.68 1,30 2.91 

Constant    −14.36 

F113: UM1 0.38 45.16 1,28 3.67 

Constant    −28.57 

F114: LM1 0.66 14.19 1,28 2.29 

Constant    −20.18 

F115: UM2 0.60 18.33 1,28 1.87 

Constant    −14.39 

F116: LM2 0.56 26.63 1,34 2 

Constant    −17.75 

BL     

F117: UI1 0.43 26.04 1,20 2.96 

Constant    −18.61 

F118: LI1 0.53 21.86 1,25 3.8 

Constant    −20.37 

F119: UI2 0.49 20.46 1,20 3.41 

Constant    −18.9 

F120: LI2 0.37 41.18 1,24 4.6 

Constant    −26.47 

F121: UC 0.47 37.07 1,33 2.17 

Constant    −16.34 

F122: LC 0.40 41.9 1,28 2.05 

Constant    −14.7 

F123: UP3 0.68 15.8 1,33 1.9 

Constant    −14.92 

F124: LP3 0.52 29.47 1,32 2.95 

Constant    −19.41 

F125: UP4  0.57 21.94 1,29 1.78 

Constant    −14.12 

 

 

Continued 
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Table 6.38 continued 

 

 

Variables a 
Wilks’s 

lambda* F b df 
Unstandardized 

coefficient 

F126: LP4  0.81 6.97 1,29 1.1 

Constant    −14.17 

F127: UM1 0.64 16 1,28 2.05 

Constant    −20.09 

F128: LM1 0.59 19.77 1,28 2.5 

Constant    −21.46 

F129: UM2 0.53 24.67 1,28 1.77 

Constant    −17.71 

F130: LM2 0.61 22.15 1,34 2.17 

Constant    −17.82 

F131: LM3 0.72 7.72 1,20 2.49 

Constant      −19.72 

* Method: Wilks’s lambda with F: 3.84 to enter and F: 2.71 to remove 
a The sectioning point for all the functions is zero 
b F values statistically significant at p ≤ 0.000 for all variables 

 

 

 

Classification accuracy of univariate discriminant functions for 3D cervical 

measurements is presented in Table 6.39. Classification accuracy ranges from 75% to 

100% in males and 54.5% to 100% in females, and the total accuracy rate ranges from 

77.4% to 95.5%. In general, 3D cervical measurements provided better classification 

accuracy rates compared to 2D cervical measurements. 24 functions out of the 28 used 

provided an accuracy rate ≥ 80%. MDUM1 (F123: 96.7%) displayed the highest 

overall accuracy. MDUI2 provided the next best classification accuracy (F107: 

95.5%), followed by MDUC (F111: 94.3%). MDUI2 (F107: 95.5%) showed the 

greatest classification accuracy among anterior teeth, while MDUM1 (F123: 96.7%) 

showed the greatest classification accuracy among posterior teeth. Males showed 

greater classification accuracy in a majority of functions (n = 19). Similar to the 2D 

cervical measurements, the highest accuracy rates were provided by MD 

measurements, however all molar teeth (except for UM1) showed higher accuracy 

rates in BL measurements. In general, classification accuracy was relatively higher 

when both MD and BL variables were used together (Tables 6.29 and 6.39). The 

bootstrap sample (n = 1,000) provided results very close to the original sample for both 

3D mesiodistal and buccolingual measurements (Table 11 and 12, Appendix A). 
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Table 6.39: Classification accuracy of original and cross validated samples: univariate 

discriminant analysis of 3D cervical measurements 

Functions Predicted Group Membership N 

 Original % Cross-validated %  

MD Male Female Total Male Female Total  

F103: UI1 86.7 71.4 81.8 86.7 71.4 81.8 22 

F104: LI1 86.7 100 92.6 86.7 100 92.6 27 

F105: UI2 100 87.5 95.5 100 87.5 95.5 22 

F106: LI2 86.7 100 92.3 86.7 100 92.3 26 

F107: UC 95 93.3 94.3 95 93.3 94.3 35 

F108: LC 94.7 90 93.3 89.5 90.9 90 30 

F109: UP3 85.7 92.9 88.6 85.7 92.9 88.6 35 

F110: LP3 85 92.9 88.2 85 85.7 85.3 34 

F111: UP4 81.3 80 80.6 81.3 80 80.6 31 

F112: LP4 90 75 84.4 90 75 84.4 32 

F113: UM1 94.1 100 96.7 94.1 100 96.7 30 

F114: LM1 82.4 69.2 76.7 82.4 69.2 76.7 30 

F115: UM2 85.7 66.7 80 81 66.7 76.7 30 

F116: LM2 85.7 66.7 77.8 85.7 66.7 77.8 36 

BL        

F117: UI1 93.3 85.7 90.9 93.3 85.7 90.9 22 

F118: LI1 86.7 91.7 88.9 86.7 91.7 88.9 27 

F119: UI2 85.7 75 81.8 85.7 75 81.8 22 

F120: LI2 80 100 88.5 80 100 88.5 26 

F121: UC 85 73.3 80 85 73.3 80 35 

F122: LC 89.5 90.9 90 89.5 90.9 90 30 

F123: UP3 90.5 78.6 85.7 90.5 78.6 85.7 35 

F124: LP3 85 71.4 79.4 85 71.4 79.4 34 

F125: UP4 75 80 77.4 75 80 77.4 31 

F126: LP4 90 54.5 77.4 90 54.5 77.4 31 

F127: UM1 76.5 84.6 80 76.5 84.6 80 30 

F128: LM1 88.2 76.9 83.3 88.2 76.9 83.3 30 

F129: UM2 90.5 88.9 90 90.5 88.9 90 30 

F130: LM2 81 80 80.6 81 80 80.6 36 

F131: LM3 85.7 75 81.8 78.6 75 77.3 22 
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Table 6.40. Univariate discriminant function analysis of RV measurements 

Variables a 
Wilks’s 

lambda* F b df 
Unstandardized 

coefficient 

     

F132: UI1 0.20 76.43 1,19 0.04 

Constant    −8.04 

F133: LI1 0.37 44.61 1,26 0.09 

Constant    −8.90 

F134: UI2 0.43 124.67 1,23 0.05 

Constant    −7.76 

F135: LI2 0.21 100.04 1,27 0.07 

Constant    −9.15 

F136: UC 0.17 166.43 1,33 0.03 

Constant    −6.91 

F137: LC 0.36 53.38 1,30 0.03 

Constant    −6.17 

F138: UP3 0.34 75.16 1,39 0.04 

Constant    −6.40 

F139: LP3 0.29 86.09 1,35 0.06 

Constant    −8.64 

F140: UP4 0.33 61.97 1,31 0.04 

Constant    −7.30 

F141: LP4 0.37 52.14 1,30 0.04 

Constant    −6.85 

F142: UM1 0.46 32.76 1,28 0.02 

Constant    −7.78 

F143: LM1 0.32 59.11 1,28 0.02 

Constant    −10.00 

F144: UM2 0.39 44.71 1,29 0.02 

Constant    0.89 

F145: LM2 0.45 41.33 1,34 0.02 

Constant    −6.91 

F146: LM3 c 0.44 28.54 1,22 0.02 

Constant    −6.73 

* Method: Wilks’s lambda with F: 3.84 to enter and F: 2.71 to remove 
a The sectioning point for all the functions is zero 
b F values statistically significant at p ≤ 0.000 for all variables 
c UM3 was excluded from the discriminant function analysis 

 

 

Classification accuracy of univariate discriminant functions for RV measurements is 

presented in Table 6.41. Classification accuracy ranges from 86.4% to 100% in males 

and 71.4% to 100% in females, and the total accuracy rate ranges from 86.4% to 100%. 

All of the functions provided an accuracy rate ≥ 80%. The best classification accuracy 

was obtained using RV measurements of UI2 (F134: 100%), followed by UC (F136) 

and LI2 (F135), with 97.1% and 96.6% classification accuracy, respectively. Among 

anterior teeth, UI2 (F134: 100%) achieved the highest accuracy rate, while among the 

posterior teeth UP4 (F138: 90.9) achieved the highest accuracy rate. MDUI2 (F107: 
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95.5%) showed the greatest classification accuracy among anterior teeth, while 

MDUM1 (F123: 96.7%) showed the greatest classification accuracy among posterior 

teeth. In most functions, males showed better classification accuracy (n = 14) than 

females (Table 6.41). In general, classification accuracy was significantly higher in 

RV measurements compared to cervical measurements.  

 

Cross validation accuracy was close to the original classification accuracy in all cases 

(Tables 6.37, 6.39, and 6.41). The bootstrap sample (n = 1,000) also provided results 

similar to the original sample for 2D cervical and RV measurements. 

 

Appendix C-B, compares the sex estimation results using morphological features of 

the skull and pelvis, with the sex estimation results using RV measurements. Due to 

the high number of equations used for each tooth and each individual, only the RV 

measurements, as the most effective parameter for sex estimation, are presented in 

Appendix C-B.    

 

Table 6.41: Classification accuracy of original and cross validated samples: univariate 

discriminant analysis of RV measurements 

Functions Predicted Group Membership N 

 Original % Cross-validated %  

MD Male Female Total Male Female Total  

F132: UI1 100 85.7 95.2 100 86.7 95.2 21 

F133: LI1 100 72.7 89.3 100 72.7 89.3 28 

F134: UI2 100 100 100 100 100 100 25 

F135: LI2 100 90.9 96.6 100 90.9 96.6 29 

F136: UC 94.7 100 97.1 94.7 100 97.1 35 

F137: LC 90 91.7 90.6 90 91.7 90.6 32 

F138: UP3 91.7 88.2 90.2 87.5 82.4 85.4 41 

F139: LP3 90.9 86.7 89.2 90.9 86.7 89.2 37 

F140: UP4 88.2 93.8 90.9 88.2 93.8 90.9 33 

F141: LP4 95.2 63.6 84.4 95.2 63.6 84.4 32 

F142: UM1 88.9 75 83.3 88.9 75 83.3 30 

F143: LM1 94.7 81.8 90 94.7 81.8 90 30 

F144: UM2 95 81.8 90.3 90 81.8 87.1 31 

F145: LM2 86.4 71.4 80.6 86.4 71.4 80.6 36 

F146: LM3 86.7 88.9 87.5 86.7 88.9 87.5 24 
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6.4.3.9. Posterior Probabilities 

 

Figures 6.13-6.23 demonstrate the probability levels of correct group assessment 

according to the discriminant scores of each individual for each dimension. The 

applicability of discriminant functions increases if one includes the posterior 

probability of the discriminant scores that they produce in the analysis.   

 

Posterior probability scores show the effectiveness of the classification of an 

individual that a function provides by demonstrating the probability of the association 

of the score with a correct classification. Due to the fact that, in this study, the selection 

point was set to zero for all functions, the value of the scores close to zero would prove 

to be small, because of the nearly 50% chance of the classification being wrong. 

Similarly, the scores that are farther from zero would therefore be associated with a 

more dependable estimate.  

 

A discriminant subprogram of SPSS was used to produce the posterior probability 

values for each function. Then the cases that were misclassified were removed and the 

probabilities of correct classification were merged for both sexes. As a result of 

plotting the data using the Excel program for Windows, the following diagrams were 

produced. Graphs of the posterior probability for the discriminant scores of univariate 

and multivariate functions are presented in Figs 6.13-6.23 for each dimension 

separately. The x-axis shows discriminant score values and the y-axis indicates the 

probability of correct sex classification. For example, if a discriminant score based on 

the stepwise analysis of the RV measurement of the LI1 (F61) is 3.39 (x coordinate), 

the posterior probability of that individual coming from the male group is 100% (y 

coordinate) (Fig 6.22).  
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Fig 6.13. Probability levels of correct sexing for each individual, (2D maxillary teeth). 

 

 

 

 

 

 

Fig 6.14. Probability levels of correct sexing for each individual, (2D mandibular teeth). 
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Fig 6.15. Probability levels of correct sexing for each individual (2D stepwise analysis). 

 

 

 

 

Fig 6.16. Probability levels of correct sexing for each individual - univariate analysis (2D 

MD measurements)  
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Fig 6.17. Probability levels of correct sexing for each individual - univariate analysis (2D BL 

measurements). 

 

 

 

 

 

 

Fig 6.18. Probability levels of correct sexing for each individual – direct analysis (3D cervical 

measurements). 
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Fig 6.19. Probability levels of correct sexing for each individual – stepwise analysis (3D 

cervical measurements).  

 

 

 

 

Fig 6.20. Probability levels of correct sexing for each individual – Univariate analysis (3D 

cervical MD measurement).  
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Fig 6.21. Probability levels of correct sexing for each individual – Univariate analysis (3D 

cervical BL measurement).  

 

 

 

 

Fig 6.22. Probability levels of correct sexing for each individual (3D stepwise analysis). 
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Fig 6.23. Probability levels of correct sexing for each individual – Univariate analysis (RV 

measurements).  
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CHAPTER 7  LIMITATIONS OF THE CURRENT STUDY 

 

7.1. Introduction 

 

Before and during the research a set of problems presented themselves to the 

researcher that imposed limitations on the knowledge that could be obtained from the 

study. It is important to emphasize the limitations of the study, particularly in regards 

to attempts at gaining access to the collection, collecting data from archaeological 

specimens that are usually incomplete compared to modern specimens, and in 

determining how representative the skeletons were of the overall population. 

Limitations of the current study, and how these were minimized or taken into account 

during the project, are outlined below.  

 

7.2. Access to the Collections  

 

One of the main problems that the researcher encountered at a very early stage of the 

research was access to the collection. As mentioned previously, the Hasanlu and 

Dinkha Tepe collections are housed at the University of Pennsylvania Museum of 

Archaeology and Anthropology (UPM) in the United States. To have access to the 

collection, it was therefore necessary for one researcher to travel to the United States, 

meaning she had to apply for a visa, a time-consuming and expensive process. In 

addition, it was not possible to stay more than three months in the United States due 

to their visa policies, not to mention high accommodation and living costs. As a result, 

the researcher had only a short time to collect all the available morphometric data for 

sex estimation, such as long bone measurements. As mentioned earlier, however, all 

the osteological sex estimation results obtained by the current study were compared 

with Selinsky’s (2009) results, in which long bone measurements were also used for 

sex estimation.  

 

Access to the CT scans of the skeletons created another problem. There were no CT 

scans available at UPM for loose teeth or for those in situ teeth with extremely 

fragmented maxillae and mandibles, which forced the researcher to use these only for 
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2D analysis and to exclude them from the 3D analysis. Moreover, the researcher was 

not provided with all the available CT scans, despite regular contact with ORSA. She 

therefore had access to CT scans of only 80 individuals, which limited the scope of the 

analysis. However, due to technical problems that occurred during the scanning 

process, 29 of the 80 CT scans could not be used for 3D analysis, which is much less 

than the number of samples used for 2D analysis.   

 

7.3. Sample-Related Limitations  

 

Based on existing osteoarchaeological studies of the Hasanlu skeletal collections, it 

was initially expected that the study would have 212 Iron Age individuals available 

for analysis at UPM. The current study confirmed the same number of skeletons; 

however, many of them were in a state that prevented the researcher from using them 

for analysis. Problems included poor preservation of the pelvis and skull, the absence 

of teeth in some of the individuals, and other tooth-related problems (mentioned in 

Chapter 5). In addition, 64 of the skeletons belonged to subadults, which were also 

excluded from the analysis. As a result, in total, 105 adult individuals from the Hasanlu 

collection were used for sex estimation analysis. Since the small sample size would 

limit the conclusions that could be drawn from the analysis, the researcher decided to 

increase the sample size by pooling another Iron Age population in close temporal and 

geographic proximity in the Solduz Valley. As discussed above, since Hasanlu is one 

of the few well-preserved Iranian collections, there was not a wide range of options 

available. The researcher, therefore, decided to expand the study to Dinkha Tepe, as 

the only available option, which increased the sample size to 143 individuals. In 

addition, bootstrapping was used to account for possible statistical biases which might 

have been caused by the small sample size. 

  

Much of the Hasanlu Tepe remains are still unexcavated and remain for future 

generations to investigate. As a result, only a sample of the Hasanlu population was 

available for analysis, not a complete set of remains from the site. In addition, as 

mentioned earlier, the expression of sexual dimorphism in this study was calculated 

based on those individuals for which sex could be accurately estimated. This means 

https://en.wikipedia.org/w/index.php?title=Solduz_Valley&action=edit&redlink=1


183 
 

that the sample may not be totally representative of the population, which introduces 

a bias into the analysis. The researcher aims to further examine the proposed methods 

in other studies on larger archaeological collections from different periods and regions, 

to check the applicability of these methods in sex estimation in other populations. 

 

As mentioned in previous chapters, there is also the possibility that skeletons of 

invaders may be mixed with those of locals in the Hasanlu Citadel (High Mound) 

sample. This might affect the results for sex estimation as a population-specific 

method. DNA analysis could be conducted to distinguish invaders from native 

inhabitants, but this was beyond the resources of the current study. However, other 

studies that have used craniofacial measurements (Dulik, 2005) and isotope analysis 

(Toebbe, 2005) to address this issue have demonstrated that none of the individuals 

were truly non-residents at Hasanlu. Dulik et al. (2011) extracted the DNA from six 

individuals, but unfortunately no aDNA was found in the samples analysed. 

Nevertheless, in the case of violent conflict, the possibility of the bodies of the invaders 

being mixed with the victims cannot be ruled out. As mentioned in Chapter 5, the 

current study used outlier detection to minimalize this limitation. In total, 15 outliers 

were detected among all three sets of measurements, nine of which were typographical 

errors or data entry errors. In addition, all the detected outliers were either MD or BL 

measurements of different teeth. In no cases were BL and MD measurements of the 

same tooth detected as outliers, not even of a single tooth from a single individual, and 

certainly not the whole dental set of an individual. Thus none of the individuals in the 

Hasanlu collection were found to have tooth diameters that fell outside the overall 

pattern of the rest of the data. The following chapter will provide a detailed analysis 

of the findings of this study.  
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CHAPTER 8  DISCUSSION 

 

8.1. Introduction 

 

Considering that odontometric methods for sex estimation are population-specific, 

different scholars have undertaken a variety of studies on tooth measurements in order 

to determine specific standards of group assessment for various populations (Bishara 

et al., 1986; Alt et al., 1998; İşcan and Kedici, 2003; Ateş et al., 2006; Acharya and 

Mainali, 2007; Hassett, 2011; Khamis et al., 2014). The present study is the first 

reference study for sex estimation using odontometric data in Iranian archaeological 

populations. From the results of this study, it is clear that dental metric standards can 

be effectively used to estimate sex in the Hasanlu and Dinkha Tepe populations. This 

has been achieved using three methods, each obtaining different degrees of reliability. 

Some of them were clearly more effective compared to others, due to providing better 

classification rates and offering fewer limitations. In order to be able to accurately 

interpret all the information obtained from this study, including which method is the 

most effective and reliable and the reasons why this is so, the data should be discussed 

at two levels: first, within the context of previous studies and research and, second, 

within a comparative context that shows which method is potentially the most useful 

and effective for sex estimation in this particular archaeological sample. The following 

will discuss the study’s objectives with regards to these two levels.  

 

8.2. Objective 1 

 

As already mentioned, the main objective of this research was to develop odontometric 

standards for sex estimation in Iranian archaeological populations. Discriminant 

function analysis and a method that relies on previous sex assessment made from 

morphological features of the pelvis and skull were used to devise population-specific 

sex prediction equations based on 2D and 3D cervical, and RV measurements, using 

skeletal samples from the Hasanlu and Dinkha Tepe collections. However, one of the 

main drawbacks of such methods is that they tend to be population-specific, and 

standards from one population cannot be used for sex estimation in other populations. 
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When an odontometric method based on permanent dentition is applied to a population 

that differs significantly from the population whose metric data were used to develop 

the method, the discriminant function formulae developed give poor or biased results. 

For example, Peckman et al. (2015) used the modern Greek discriminant functions for 

sex estimation in African American populations. The sex classification accuracy 

results for males was between 93.6% and 100%, however for females it was extremely 

low, between 0% and 18%. Thus, for sex determination of archaeological skeletal 

remains using dimensions of permanent dentition, the best way to circumvent the 

problem of sample specificity is to use dental data from adult individuals whose sex 

estimates are based on well-established descriptive characteristics of the pelvis and/or 

the skull, because they provide a greater chance of accurately assessing sex (Viciano 

et al., 2011). The advantage of these data is that they can be used to develop the 

methodology for sex determination and then the sample-specific formulae can be 

applied to other adults without diagnostic elements like the skull and pelvis or whose 

skeletal morphology is ‘intermediate’—i.e. in the same sample (Viciano et al., 2011). 

This study developed sex estimation discriminant functions for the Hasanlu and 

Dinkha Tepe collections which are presented in Appendix D. To determine the sex of 

an individual using the formulae presented here, the value of each dimension in a 

particular function is multiplied by its respective unstandardized coefficient, and the 

constant is added to the product. If the result thus obtained is greater than the sectioning 

point of zero (see chapter six) the individual is considered male; if the result is less, it 

is considered female. The following will discuss the applicability of these functions 

for sex estimation using 2D cervical, 3D cervical, and RV measurements in the 

Hasanlu and Dinkha Tepe collections.  

 

8.3. Objective 2 

 

To assess the applicability of 2D cervical measurements in sex estimation for the 

Hasanlu and Dinkha Tepe skeletal collections.  

 

This study used 2D cervical MD and BL measurements for sex estimation. All the 

variables analysed here presented statistically significant differences between males 
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and females (P < 0.000), with the exception of the UM3 that were excluded from the 

analysis. A comparison between the two sexes showed that the classification accuracy 

of all functions was higher for males. This result is in agreement with other studies on 

cervical tooth measurements conducted on other populations (Vodanovic et al., 2007; 

Hassett, 2011; Viciano et al., 2011;  2015; Zorba et al., 2011; 2013; Mujib et al., 2014; 

Peckmann et al., 2015).  

 

The greatest difference in percentage of sexual dimorphism (SD%) was observed in 

canine MD measurements. There is little comparative data against which the amount 

of sexual dimorphism in cervical measurements can be compared. Vodanovic et al. 

(2007) and Tuttösí and Cardoso (2015), however, do provide percentages of sexual 

dimorphism for cervical tooth measurements in other archaeological samples. 

Vodanovic et al. (2007), however, reported only the SD% for MD measurements of 

the UC and LM3. The SD% for UC MD measurement in the present study was 13.93%, 

which is similar to the Tuttösí and Cardoso (2015) study (13.83%) and about 4% 

higher compared to the Vodanovic et al. (2007) study (9.55%). The highest percentage 

of sexual dimorphism was observed in the LC. The SD% for this tooth was 14.99% 

(MD) and 12.16% (BL), which is significantly higher compared to the Tuttösí and 

Cardoso (2015) study (4.90% MD and 6.87% BL). In the latter study, the UI2 showed 

the highest percentage of sexual dimorphism, contradicting the present and other 

studies (Cardoso, 2008; Zorba et al., 2011). As discussed in chapter three, the high 

level of sexual dimorphism in canines can be associated with high rates of male 

violence and polygyny, which has evolutionary significance. For molar teeth, the M2 

showed the highest percentage of sexual dimorphism, in accordance with the results 

of Tuttösí and Cardoso (2015), and also those of crown measurement studies (Cardoso, 

2008; Garn et al., 1979; Zorba et al., 2011). Other studies on crown and diagonal 

measurements of molars, however, reported different results. For example, Prabhu and 

Acharya (2009) report the LM1 as the most sexually dimorphic tooth in Indian 

populations, while İşcan and Kedici (2003) observe the highest degree of sexual 

dimorphism in the UM1 of Turkish populations. A recent study by Peckmann et al. 

(2015) on African-American populations also reports the UM3 as the most sexually 

dimorphic tooth. These differences can be attributed to genetic and/or environmental 
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influences in the expression of the sexual dimorphism of human dentition (Dempsey 

and Townsend, 2001).  

 

Discriminant function analysis for single tooth measurements also showed that the 

cervical measurements of the permanent canines and incisors were the most dimorphic, 

providing classification accuracy of between 76.9% and 87.9%. These results are in 

accordance with previous studies (Alt et al., 1998; Starp, 1990; Ellendt, 1993; Hassett, 

2011; Viciano et al., 2011; 2013; 2015; Mujib et al., 2014). In addition, it was found 

that M2 dimensions can be a very effective single variable for sex estimation, with a 

classification accuracy of 83%. A similar result was achieved for a modern Greek 

population (Zorba et al., 2012), and several archaeological populations also reported a 

high percentage of correct classification for the second molar (Starp, 1990; Ellendt, 

1993; Viciano et al., 2015; Tuttösí and Cardoso, 2015). 

 

Furthermore, several different discriminant functions were created using different 

combinations of tooth dimensions. The best discriminant functions for sex 

classification used the maxillary and mandibular incisors, and a combination of 

maxillary and mandibular incisors and canines. The classification accuracy rates 

obtained were 100% for both original and cross-validated data; however, this 

observation was based on a small sample size (n = 27, n = 22), and despite the fact that 

functions derived from similar size samples are reported (e.g. Viciano et al., 2011), it 

is recommended that the results be treated with caution. The second-best discriminant 

function used a combination of canines, M1 and M2, with an accuracy rate of 92.1% 

for both original and cross-validated data. This was followed by a discriminant 

function analysis that used maxillary and mandibular canines, providing a correct sex 

classification rate of 87.7% for the original and 84.6% for the cross-validated data. 

Although İşcan and Kedici (2003) report that the majority of difference between the 

sexes appears to come from the canines, Garn et al. (1967) suggest that the teeth 

located adjacent to the canines are more dimorphic than others; however, some studies 

of crown MD and BL measurements indicate that incisors are the least sexually 

dimorphic teeth (Bishara et al., 1986; Ling and Wong, 2007). Acharya and Mainali 

(2007), however, found that the central and lateral incisors show significant sexual 
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dimorphism. Considering the dimensions measured, the MD dimension provided 

better classification rates than the BL dimension. According to Acharya and Mainali 

(2007), the reason why MD measurements have better sex discriminatory ability might 

be due to the upper and lower arch dimensions; males exhibited statistically larger 

measurements of the antero-posterior jaw and also arch size was shown to affect tooth 

size, which indicate that males’ larger jaws result in comparably larger MD 

dimensions. Regarding the molars, BL measurements provided better classification 

rates than MD measurements. This finding was consistent with the results from other 

studies (Garn et al. 1966a; İşcan and Kedici, 2003). Univariate discriminant analysis 

provided lower classification rates compared to direct and stepwise discriminant 

analysis. This shows that combining both MD and BL dimensions allows for more 

discriminatory power compared to using only one measurement. Regarding the 

posterior probability results, 15.5% of the sample provided over 95% probability of 

correct classification, while 51% provided between 80-95% posterior probability.  

 

In the present study, one of the main concerns was the reliability of dental 

measurements, as is common in metric studies. The overall results of the coefficient 

of reliability suggested that the intra- and inter-observer cervical dental measurements 

both had high levels of consistency and reliability. The error measurements are 

comparable to those reported in studies of permanent teeth (Hassett, 2011; Viciano et 

al., 2011; 2015; Pilloud and Hillson, 2012; Tuttösí and Cardoso, 2015). Intra- and 

inter-observer error on cervical dental dimensions has been assessed by a few studies 

(Hassett, 2011; Viciano, 2011; 2013; 2015; Tuttösí and Cardoso, 2015). For 

comparison, Hillson et al.’s (2005) study is the most appropriate, because the present 

study uses the same cervical measurements as proposed by Hillson et al. (2005). Their 

study showed that in comparison with premolars, incisors, and canines, it is slightly 

more difficult to measure molars consistently for cervical diameters in permanent 

dentition. The reason being that they provided fewer clear landmarks to base 

measurements on. The authors also reported slightly larger values for MD 

measurements compared to BL measurements. Similar results were reported by Aubry 

(2014). In the present study, the degree of intra-observer error was smaller than that of 

inter-observer error, which is in agreement with previous investigations (Kieser and 
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Groeneveld, 1991; Hillson et al., 2005; Acharya and Mainali, 2007; Peckmann et al., 

2015).    

 

In conclusion, the overall results of the 2D cervical measurement analysis showed that 

in the Hasanlu and Dinkha Tepe samples males have significantly larger teeth than 

females, with incisors and canines as the most sexually dimorphic teeth. Discriminant 

function analysis showed the high sex classification accuracy rates of 2D cervical 

measurements in the Hasanlu and Dinkha Tepe collections. In addition, a comparison 

of these results with previous studies showed that they can be as successfully and 

effectively applied to archaeological samples as traditional crown and cervical 

methods used in other populations. In general, 2D cervical measurements were found 

to be of value for sex assessment. The method presented here is a useful tool for 

establishing accurate demographic data from the skeletal remains of these Iron Age 

populations from Iran.  

 

8.4. Objective 3 

 

An examination of the application of Hillson et al.’s (2005) method to archaeological 

samples.  

 

As mentioned before, when a study involves archaeological samples, the ability to use 

teeth as a means of assessing sex is very limited, due to attrition of the tooth tissue, 

very common even in young individuals. In many cases the crowns of the teeth are 

entirely or almost entirely worn out, which makes measuring crown dimensions nearly 

impossible. Some recent studies have used dental cervical measurements instead, 

suggesting that they provide measurement accuracies similar to those of crown 

measurements (Hillson et al., 2005; Aubry, 2014). The purpose behind devising these 

cervical dimensions is that they replace crown measurements where the crown is too 

damaged due to processes such as attrition or breakage. Cervical measurements are 

therefore ideal replacements for crown measurements in cases such as the Hasanlu and 

Dinkha Tepe samples, where the tooth crowns are too worn to be measured. This 

problem is in addition to other problems mentioned in previous chapters, such as non-
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metric variations, dental pathologies, and in situ teeth. This study, therefore, used the 

cervical MD and BL measurements proposed by Hillson et al. (2005) for sex 

estimation, which allowed a larger dataset to be obtained.  

 

However, Hillson et al.’s (2005) method presents its own set of problems. Depending 

on the shape and position of the tooth at the cervical margin in cross-section, it can be 

difficult and time-consuming, for some in situ teeth, to place the calliper tips at the 

MD landmarks. The slightly higher rate of intra- and inter-observer error could be due 

to this issue. In addition, as suggested by Hillson et al. (2005), there is a tendency 

among researchers to measure loose teeth from the lingual side. Depending on the 

nature of the samples, however, the measurements of some teeth can be taken from the 

buccal aspect only. Nevertheless, in the case of loose teeth or fragmented jaws, the 

teeth can be measured from the lingual aspect or by using the backside of the calliper 

where the tips meet end-to-end. It was observed during the course of collecting the 

data that measurements differed greatly, depending on the position from which they 

were taken. The same observation was reported by Aubry (2014), though he did not 

report the same observation for molars. The present study, however, observed that the 

degree of difference in molars was significantly lower when compared to anterior and 

premolar teeth. To overcome this problem, all 2D measurements for both loose and in 

situ teeth were taken from the labial side. The same solution was also suggested by 

Aubry (2014).  

 

Aubry (2014) detects two more problems that concern BL measurements of molars to 

Hillson et al.’s (2005) method. He suggests that the location Hillson et al. (2005) 

proposed for BL measurements of molars (at points midway along the buccal and 

lingual sides) is problematic, because it is also a location where enamel extension 

commonly appears. To solve this problem, Hillson et al. (2005) suggested taking the 

measurements from one side or the other of the enamel extension, whichever provides 

the maximum value. According to Aubry (2014), however, this solution is 

problematic, because “maximum values (whether mesial or distal to the enamel 

extension) are actually homologous, and […] this measurement is homologous to BL 

measurements of molars lacking enamel extensions” (Aubry, 2014, p. 160). The 
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second problem concerns the reduction in the distal component of molars, which 

causes different diameters between individuals with differential reduction of the distal 

portion of the tooth. This was not addressed by Hillson et al. (2005) while Aubry 

(2014) provides a modification that also tackles the first problem. He suggests taking 

“the maximum breadth of the mesial portion of the tooth in line with the 

protocone/paracone and the protoconid/entoconid for upper and lower molars, 

respectively” (Aubry, 2014, p. 163) (Fig. 8.1). This measurement location results in 

avoiding the enamel extension and also allows researchers to take the same 

measurements on all molars, whether or not the distal cusp is reduced in size. In the 

present study, the problem of enamel extension was tackled using Hillson et al.’s 

(2005) solution. However, since Aubry’s (2014) paper was published a few months 

after data collection in the United States, it was not possible to test the efficacy and 

applicability of the proposed modifications. Nevertheless, Tuttösí and Cardoso (2015) 

put Aubry’s (2014) modifications of Hillson et al.’s (2005) method to the test, and 

conclude that they “perhaps” (Tuttösí and Cardoso, 2015, p. 310) increase the 

reliability of MD measurements of molars, because of more clarity in defining 

landmarks.  

 

 

Fig 8.1. BL measurements of molars as defined by Aubry (2014, p. 161). 
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In addition, during the course of data collection it was observed that callipers could 

easily damage the tooth crown, particularly in more fragile cases, and could also lead 

to the removal of the calculus from adjacent teeth. A great deal of care, therefore, 

needed to be taken during the data collection.  

 

Cervical measurements taken by callipers are considered very effective in sex 

estimation studies, as they are not affected by dental wear. This is especially important 

in archaeological samples, in which wear is very common. However, they present their 

own set of problems, as mentioned above. It is therefore necessary to provide another 

method with fewer limitations as a complement to 2D cervical measurements. The 

present study used advances in imaging technologies to introduce a more reliable and 

effective alternative method of taking cervical measurements for sex estimation.  

 

8.5. Objective 4 

 

In what ways can the 2D cervical measurement method be modified, and how reliable 

are these modifications for sex estimation in the Hasanlu and Dinkha Tepe 

collections? 

 

2D odontometric methods are reliable, easy to use, inexpensive, and do not require a 

lot of time or equipment. 3D technology-based methods, on the other hand, despite 

being expensive, time-consuming, and requiring more facility and practice, offer a 

range of advantages, especially in archaeological sample analysis, that have made 

them very popular with forensic and physical anthropologists. 3D methods are non-

invasive and therefore reduce the chances of damaging fragile and delicate 

archaeological samples. They are also accessible in that they do not require the 

specimen to be present in order to undertake analysis, meaning they are not limited to 

use in museums and archaeological sites. 3D technology enables the user to obtain a 

variety of dental linear and volumetric measurements. As mentioned before, this study 

collected cervical measurements from 3D models of each tooth. This enabled us to 

have a better understanding of the differences between 2D and 3D cervical methods. 
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In addition, this new technique helped us to solve the following issues presented by 

Hillson et al.’s (2005) methods:   

 

1) In the present study, each tooth was segmented from the jaw using the 

thresholding tool in the AMIRA software. This enables the user to create a 

separate 3D model of every single tooth regardless of their situation (loose or 

in situ). Therefore, in 3D analysis all in situ teeth are changed into loose teeth; 

this is different from 2D cervical measurements where in situ teeth cannot be 

rotated or removed from the jaw. This overcomes the limited accessibility of 

MD measurements in in situ teeth and enables the user to easily identify the 

MD cervical measurement landmarks.  

 

When taking the MD cervical measurements in loose teeth, it was initially observed 

that identifying the CEJ line was easier and more accurate using callipers compared to 

3D measurements. To increase the reliability and the easiness of the CEJ identification 

process in 3D analysis, the crown was separated from the root using a second threshold 

level, and the crown and the root of the same tooth were colour coded. In doing so, the 

researcher and the second observer responsible for inter-observer error analysis found 

the process of CEJ line identification using 3D methods much easier and more 

accurate. 

 

2) As mentioned before, in situ teeth can be measured either from the buccal or 

lingual sides, depending on the nature of the sample. In 3D analysis, however, 

the ability to make a separate 3D model of each in situ tooth solved this 

problem by enabling the user to take measurements from different aspects. In 

addition, the measurement difference that the position of taking the MD 

measurement (either buccal or lingual) causes in 2D cervical measurements 

was not observed using the 3D method.   

 

3) The ability to create 3D models of the tooth using CT scan images significantly 

reduces the potential damage that might be caused when taking measurements 

by calliper. Using 3D methods therefore 1) prevents the teeth from being 
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damaged by the sharpened beaks of the callipers and 2) prevents certain 

pathological dental conditions such as calculus removal.  

 

Using 3D techniques for odontometric analysis not only resolved the aforementioned 

limitations of 2D cervical analysis but also provided better sex classification results. 

A comparison between the 2D and 3D odontometric statistical analyses will provide 

us with a better understating of the potential effectiveness of 3D methods.  

 

Similar to 2D cervical measurements, male values were significantly (P < 0.000) 

different from female values, except for UM3 and MD measurement of LM3, which 

were excluded from the analysis. Classification accuracy of 32 functions was higher 

for males, and higher for females in 21 functions. This is in contrast with 2D cervical 

measurement results which showed higher classification accuracy of all functions in 

males.   

 

SD% was higher in all teeth for 3D measurements compared to 2D measurements 

(except M3 and BLLM2). In contrast to 2D measurements, the highest SD% was 

observed in the MD measurement of UI2 (22.9%), which was significantly higher than 

the SD% achieved using 2D measurements (9.7%). This observation is in accordance 

with other studies on 2D cervical measurements (Cardoso, 2008; Zorba et al., 2011). 

LC was the most sexually dimorphic tooth, with 20.96 SD% in MD measurement and 

18.54 SD% in BL measurement, again much higher than the SD% observed in 2D 

measurements (14.99% and 12.16%). This difference could be due to the small sample 

size of the 3D data. The next most sexually dimorphic diameter in both 2D and 3D 

cervical measurements was the MD measurement of UC, with 13.93 and 18.70 SD% 

respectively. UM2 showed the highest SD% among 3D measurements of molar teeth, 

which was in accordance with 2D cervical data. The lowest SD% was also observed 

in the MD measurement of UM3 for both 2D and 3D data. 

 

In general, 3D cervical measurements provided better sex classification rates 

compared to 2D cervical measurements. Univariate discriminant function analysis for 

3D measurements showed better classification rates in 26 functions out of the total of 
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29. Total classification rate of single measurements ranged from 65.5% to 86.8% for 

2D measurements and 77.4% to 96.7% for 3D measurements. The 3D MD 

measurement of UM1 provided the best classification rate of 96.7%, followed by the 

MD measurement of UI2 (95.5%). The accuracy rates of these measurements in 2D 

cervical analysis were only 77.4% and 81.8% respectively. For the direct discriminant 

functions, overall accuracy rate of 3D measurements ranged from 82.4% to 100% for 

both original and cross-validated data, which was significantly higher than 2D 

measurements (75.9-89.9%). 3D measurements of UI2 provided the best classification 

rate (100%), followed by UC and LC each with 97.1% and 96.7% correct classification 

rates respectively. This is in accordance with the results obtained by 2D cervical 

measurements. In stepwise discriminant analysis, the 3D measurements also showed 

better classification rates compared to 2D measurements. Half of the analysed 

functions provided an accuracy rate of 100%. The best classification functions used 

different combinations of incisors, canines, and maxillary molars. The same 

combinations were also used in the best stepwise discriminant functions using 2D 

cervical measurements. Premolars in both direct and stepwise discriminant analysis of 

3D measurements provided high classification accuracy rates of between 84% to 

100%. This is in contrast with the results obtained by 2D cervical measurements, in 

which premolars correctly classified sex of only 75.9% to 84% of the skeletons. The 

variable presented first in all of the 3D measurement stepwise discriminant functions 

was the MD measurement. Therefore, the 3D cervical MD measurement in all teeth 

was the most reliable for sex estimation, more than the BL cervical measurement. This 

is in accordance with the stepwise discriminant analysis of 2D cervical measurements. 

This significant difference between the 2D cervical and 3D cervical measurement 

discriminant function analysis results is most likely because, for some of the 2D and 

3D functions – particularly the stepwise discriminant functions using measurements 

of several teeth – the sample sizes were very small. Therefore the results must be 

interpreted with caution.  

 

Posterior probability analysis also provided better results compared to 2D cervical 

measurements: 46.74% of the measurements provided over 95% probability of correct 
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classification, while 70.31% provided between 80-100% probability of correct 

classification.  

 

The overall intra- and inter-observer error results confirmed that the 3D image system 

was as reliable and accurate as the 2D system for measuring teeth using callipers. 

Previous studies have reported similar findings of measurements obtained using 3D 

methods or direct measurements on plaster models (Smith et al., 2009; El-Zanaty et 

al., 2010; Ashar et al., 2012). However, these studies are in crown MD and BL 

measurements, rather than cervical. In the current study, both 2D and 3D 

measurements generally provided excellent reliability within and between observers. 

The BL dimension was measured most reliably, whether based on 3D or 2D 

measurements, whereas MD measurements displayed lower reliability. However, 3D 

MD measurements showed slightly better consistency and reliability compared to 2D 

cervical measurements, which could be due to better identification of the CEJ line in 

3D analysis. Similar to 2D cervical measurements, slightly larger values were obtained 

for molar teeth in 3D analysis, especially LM2 and LM3.  

 

The findings of the present study show that dental cervical measurements can be 

obtained using 2D or 3D methods. This study’s comparisons of the two methods 

highlights the effectiveness and significance of 3D analysis in this field of study, and 

enables researchers to confidently move from 2D to 3D. This study confirms a very 

strong correlation and linear relationship between the 2D and 3D measurements 

obtained using Hillson-Fitzgerald dental callipers and the AMIRA software. Values of 

Pearson’s correlation coefficient were significant at the 0.01 probability level for all 

variables, confirming that 2D and 3D cervical measurements were comparable. 

Furthermore, the maximum and minimum differences between 2D and 3D 

measurements were found to be 0.09 and 0.00 mm, respectively. This range is lower 

than those reported by other studies comparing dental manual measurements with 

those obtained by 3D analysis. For example, Lu et al. (2000) compared different 3D 

dental measurements obtained by a laser scanning 3D digitisation system with manual 

measurements, and reported a measurement difference of less than 0.10 mm. Hirogaki 

et al. (2001) in a similar study reported the measurement differences within 0.30 mm. 
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Smith et al. (2009) compared 2D and 3D crown MD and BL measurements together 

and reported measurement differences between 0.00 and 0.60 mm. Another study by 

Ashar et al. (2012) on 2D and 3D crown measurements showed a mean difference of 

between 0.00 and 0.30 mm.    

 

Similar to the results obtained from 2D cervical measurements, the 3D cervical 

measurement analysis showed that, in the Hasanlu and Dinkha Tepe collections, males 

have significantly larger teeth than females. Incisors and canines were also found to 

be the most sexually dimorphic teeth. In general, discriminant function analysis using 

3D cervical measurements provided better classification rates compared to 2D cervical 

measurements. The high classification rate and excellent inter- and intra-observer error 

results, as well as this method’s ability to overcome the limitations presented by 

Hillson et al. (2005), make it a reliable and effective technique for sex estimation in 

these two populations. 

 

8.6. Objective 5  

 

Can the root volume be used as a new parameter for sex estimation and how reliable 

is it?  

  

As discussed in Chapter 3, tooth root length has a high degree of sexual dimorphism, 

and in some cases is even more successful in sex estimation than traditional crown 

measurements (Zorba et al., 2014). The present study therefore investigated whether 

or not the volume of the tooth root is also sexually dimorphic and whether it can be 

used for sex estimation. The traditional methods used to collect the physical volume 

measurements, such as the water displacement method, are highly prone to error and 

require a highly skilled technician (Trinh et al., 2006). Using the water displacement 

method in dental volumetric analysis also presents other problems. For example, this 

method is only useful for taking the volume measurements of loose teeth, and therefore 

the teeth which are still in the jaw and cannot be rotated or taken out of the jaw cannot 

be measured by this method. Furthermore, volume measurements of different parts of 

the tooth, such as the root or crown, cannot be taken separately. 
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During the last decade, advances in imaging techniques such as computed tomography 

(CT) have enabled researchers to create highly accurate dental volume rendering 

models and multiplanar reconstructions. This allows for a better examination of the 

sexually dimorphic characteristics of the tooth, especially the root, which is usually 

hidden in the jaw. The ability to make a separate 3D model of each tooth enables the 

user to treat in situ teeth as loose teeth, similar to 3D cervical measurements. In 

addition, the segmentation tool in the AMIRA software allows for the separation of 

different parts of the tooth, so that the volume of each part can be measured separately. 

This ability significantly decreases the risk of error in dental volumetric analysis, as 

has also been observed by previous studies (Liu et al., 2010; Forst et al., 2014; Kim et 

al., 2016). Other studies have also validated the efficacy of CT scans as a tool to 

measure both root length and volume (Liu et al., 2010; Lund et al., 2012; Kim et al., 

2013; Forst et al., 2014). Liu et al. (2010) conducted in vivo volumetric determination 

using CT scan images and demonstrated small differences (within –4% to +7%) from 

the actual physical volumes.  

 

The current study is the first study of its kind to use tooth root volume for sex 

estimation. As mentioned before, Tardivo et al. (2011; 2015) used the volume of the 

canine teeth for sex estimation and correctly classified sex in 100% of their samples. 

In their studies the CT scans of modern French people were used to create 3D models 

of the teeth using the MIMICS-10.01 software. Tardivo et al.’s (2011; 2015) studies 

used the canine pulp volume and the total volume of the canines for sex estimation. 

However, while the classification rate of these studies was very high, their method 

needs to be tested using other tooth types. Moreover, the size of the tooth crown is 

highly affected by dental pathologies such as caries (particularly occlusal caries) and 

tooth wear. This, in more severe cases, causes pulp exposure -an opening through the 

wall of a tooth, produced by pathologic processes, thereby exposing the dental pulp-. 

(Scully et al., 2010; Van Noort, 2013) and consequently changes the measurements. 

These issues are overcome in this study by measuring the volume of the root from the 

apical to the cemento-enamel junction (CEJ). Tooth root volume measurements can be 

especially effective in the case of samples containing poorly preserved and highly 

worn teeth. The root volume measuring process was made much easier due to firstly, 
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segmenting the tooth from the jaw and the crown from the root using two different 

threshold levels, and secondly, colour coding the crown and the root. In the current 

study, the quality of the CT images of the mandible was better than that of the maxillae. 

This might be because of a bigger contrast between the dental alveolus and the cortex 

that surrounds it, resulting in a better visualization. Nevertheless, during the course of 

the research, no differences between the segmentation processes of upper and lower 

teeth were detected. It was noticed that the density of the root in both the upper and 

lower jaws was closer to cortical bone and easily visualized. A problematic situation 

occurred when the roots were adjacent to cortical bone in the mandible, making 

segmentation relatively difficult. 

 

In this study RV measurements demonstrated significant sexual dimorphism, and 

mean values were considerably higher in males compared with females. A comparison 

between the two sexes showed that the classification accuracy of most functions was 

higher for males. This result is in agreement with that of the 2D cervical measurements.    

 

The percentages of sexual dimorphism were also calculated for the RV measurements. 

There is no comparative data against which the degree of sexual dimorphism in tooth 

root volume can be compared. However, a provisional comparison with crown, 

cervical, and root measurements can be performed, which describes the patterns in the 

sample and which might underline some interesting similarities or differences. It 

becomes even more important considering that it introduces a new parameter for sex 

estimation.  

 

In 2D cervical measurements, the greatest difference in percentage of sexual 

dimorphism was observed in the LC, however analysis of root volume showed the 

highest percentage of sexual dimorphism in the UI2, which is similar to the results of 

the 3D cervical analysis. This result is in accordance with the findings of Tuttösí and 

Cardoso’s (2015) study of tooth cervical measurements and Zorba et al.’s (2014) study 

of root length measurements. The UC showed the next highest percentage of sexual 

dimorphism; this tooth has also been reported high for sexual dimorphism in crown, 

cervical, and root length measurements (Garn et al., 1979a; Cardoso, 2008; Zorba et 
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al., 2011; 2014). These teeth also provided the highest classification accuracy rate for 

the univariate discriminant function analysis. For molar teeth, the M2 showed the 

highest percentage of sexual dimorphism, in accordance with the results of Tuttösí and 

Cardoso (2015) and also those of crown measurement studies (Cardoso, 2008; Garn et 

al., 1979a; Zorba et al., 2011). 

 

Univariate discriminant function analysis also showed that the root volume of incisors 

and canines was the most dimorphic, providing classification accuracy of between 89.3 

to 100%. These results were in accordance with the 2D cervical measurements and 

with other studies on crown and cervical measurements (Alt et al., 1998; Hassett, 2011; 

Viciano et al., 2011; 2013; 2015; Mujib et al., 2014). The root volume of the UI2 

reached the highest accuracy rate (100%), followed by the UC, which correctly 

classified sex in 97.10% of the sample. This result is in accordance with the 3D cervical 

results and those of Tardivo et al.’s (2015) study on the sexual dimorphism of the total 

volume of canines. However, 2D cervical measurement results and most previous 

studies on crown and cervical measurements (Saunders et al., 2007; Angadi et al., 

2013; Khamis et al., 2014; Viciano et al., 2015) have demonstrated a greater sexual 

dimorphism in the dimensions of LC. The RV measurement of the UM2 also provided 

the highest accuracy rate among molar teeth (90.3%). Similar results were achieved 

by 2D cervical measurements and by other studies on cervical and crown 

measurements (Zorba et al., 2012; Viciano et al., 2015; Tuttösí and Cardoso, 2015). In 

addition, the current study showed that, similar to the 3D cervical measurement, the 

root volume of premolar teeth can provide very effective variables for sex estimation, 

with a classification accuracy ranging between 84.4% and 90.9%. However, the 

analysis of 2D cervical measurements reported a low accuracy rate of 75.9-79.3% for 

premolars.  

 

Furthermore, several multivariate discriminant functions were created using different 

combinations of variables. The results of the stepwise discriminant function analysis 

indicated that the prediction accuracies for estimating sex using the RV measurements 

ranged from 90 to 100% in Hasanlu and Dinkha Tepe skeletons, with accuracy in 

males higher than in females. Six out of the tweleve functions used in the discriminant 
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function analysis provided an accuracy rate of 100% for both original and cross-

validated data. In general, the classification accuracy rate for both univariate and 

stepwise discriminant function analysis was better than those obtained from 2D and 

3D cervical measurements, showing that the volume of the tooth root can also be useful 

for sex estimation. The efficacy of RV measurements in sex estimation is supported 

by another finding of this study: as previously noted, some studies have reported a 

positive correlation between root length and traditional crown measurements (Garn et 

al., 1978; Harris and Couch, 2006). However, this positive correlation has been 

reported for root length and crown size only, and not for RV and cervical 

measurements. The Pearson correlation and regression analysis in this study also 

showed a positive correlation and linear relationship between 2D cervical and RV 

measurements, showing that both measurements yield the same biological 

information. The stepwise discriminant function analysis based on the functions 

combining 2D cervical and RV variables also showed that in all functions RV 

measurements made the most significant contribution to discrimination.    

 

Posterior probability results for RV measurements were that 75.75% of the data 

provided over 95% probability of correct classification, while 82.79% of the data 

provided between 80 to 100% probability of correct classification.  

 

Precision testing demonstrated low intra-observer error, with R values > 0.99, rTEM 

< 2.06%, and TEM < 4.65. These results are slightly higher than 2D and 3D cervical 

measurements. However, the TEM values were significantly higher (< 4.65) compared 

with the cervical measurements (< 0.05). This difference is due to the positive 

association between the size of the TEM and the size of the measurements. For 

example, a large mean value will have a large TEM, and thus the comparison of 

measurements of different size cannot be assessed (Ulijaszek and Kerr, 1999). To 

overcome this problem, the TEM was transferred to relative TEM (rTEM%). The 

rTEM value for tooth root volume measurements (< 2.06) was slightly higher than that 

for cervical measurements (< 0.78). The results of inter-observer error analysis also 

showed R values of < 0.98 and rTEM of < 2.27%.   
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The sex estimation technique proposed here represents a novel technique based on 

tooth root volume measurements taken from CT images of permanent teeth. Flow 

charts outlining the overall analysis process applied in this research and also the 

suggested tooth measurements for sex estimation are presented in Appendix D. Based 

on the set of data used here, the estimation of sex using RV measurements is 

significantly effective. Inter- and intra-observer error was low for all variables. 

Therefore it appears that the technique proposed here is a valid alternative for sex 

estimation, with the added value that no manual handling of the teeth is necessary. In 

addition to all the advantages that 3D image analysis system methods present 

compared to 2D manual measuring methods, RV measurements are not influenced by 

severe dental wear or by pathological conditions such as enamel hypoplasia along the 

CEJ, which could impose limitations on 3D cervical measurements. Therefore, RV 

measurements are particularly useful for sex estimation in poorly preserved 

archaeological samples, such as the Hasanlu and Dinkha Tepe collections.  

 

8.7. Conclusion  

 

As previously discussed, the main objective of this study was to introduce dental 

metric standards for sex estimation in Iranian archaeological populations. Overall the 

results of the study showed that in all sets of measurements, Hasanlu and Dinkha Tepe 

males exhibited larger teeth than their female counterparts. Incisors and canines in all 

measurements presented the highest level of sexual dimorphism, which supports 

previous studies on crown and cervical measurements in different modern or 

archaeological populations, including Spanish, Italians, Japanese, Greek, and Turkish. 

The sex classification rates for all measurements ranged between 65.5 to 100%, 

depending on the measurement used. The classification rate was higher for males in 

most of the functions, indicating that females have a greater variation in tooth size and 

can more often be misclassified as males; or it could simply be because of the smaller 

sample size in respect of females. In general, as the results show, the highest 

classification rates using single measurements or a combination of different 

measurements were achieved by, first, RV measurements, second, 3D cervical 

measurements, and third, 2D cervical measurements. In addition, posterior probability 
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results also showed that 82.79% of the measurements used in all functions provided 

posterior probabilities between 80-100%, which is significantly higher than 2D 

cervical and 3D cervical measurements, with 51% and 70.31% posterior probability 

respectively.  

 

It is necessary to define the data measurement points clearly so that scientific 

consistency and accuracy is ensured. This will eventually enable the researcher to 

understand the definition and to reproduce the measurements. The author herself and 

the second observer found the identification process of cervical landmarks on 3D 

images, as well as setting the appropriate threshold levels to segment the tooth and the 

root, easier, more accurate, and more repeatable compared to 2D cervical 

measurements. The reason for this is that a large number of in situ teeth in the 

collections made the landmark identification process using callipers, particularly on 

MD measurements, more difficult. In the case of root volume in particular, the whole 

process was easier to follow, due to no landmarks being involved. The results obtained 

from both the intra- and inter-observer error analyses conducted of all three sets of 

data revealed no differences between and within the observers, as none of the 

comparisons yielded statistical significance. Coefficients of reproducibility with 

statistical acceptance were also achieved. In countries such as Canada and the United 

States, scientific methodologies that are utilized by expert witnesses must fulfil the 

Mohan (1994) and Daubert (1993) admissibility criteria (Rogers and Allard, 2004; 

Christensen, 2004). In order for a methodology to fulfil their criteria, the minimum 

standard is an accuracy rate of equal to or greater than 80%, and an intra-observer error 

rate of less than or equal to 5% (Rogers and Allard, 2004; Christensen, 2004). 115 out 

of 146 functions analysed displayed overall accuracy rates of 80% or higher. Inter- and 

intra-observer error values for all the measurements were less than 10%. Due to the 

low error rates cited in this research, sex estimation from 2D and 3D measurements in 

the Hasanlu and Dinkha Tepe populations adheres to the Mohan and Daubert criteria. 

However, it should be noted that although these criteria are related to forensic cases, 

the high accuracy rate and the low intra- and inter-observer error values show the 

validity and accuracy of the methods introduced in this study.  
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One of the main objectives of this study was to introduce a new method that would be 

the most appropriate for sex estimation of archaeological samples using odontometric 

data. Among all the methods proposed in this study, root volume was found to be the 

most appropriate method for sexing archaeological samples in the case of the Hasanlu 

and Dinkha Tepe collections. Root volume provided the highest accuracy rates, 

excellent reliability, and presented fewer limitations, particularly compared to 2D 

cervical measurements. This method is also less likely to be affected by certain dental 

pathologies, which gives it an advantage over 3D cervical methods and allows the 

inclusion of more data in the analysis.  

 

It must be stressed, however, that this study used an osteologically estimated sex 

sample to test the method. Despite the high level of accuracy of morphological 

techniques of sex assessment, the true sex of each of these individuals is unknown. It 

is therefore likely that the percentage of correct classifications of known sex may be a 

small degree higher or lower than in the presented data (Tuttösí and Cardoso, 2015). 

The other major limitation of this study was its small sample size. The study must be 

expanded, therefore, with a larger data sample in order to refine the proposed new 

method. However, the importance of this study lies in the fact that it can be applied to 

unknown skeletal remains belonging to the same period (the Iron Age) in Iran. This 

becomes even more important considering that teeth have a better chance of survival 

in severe taphonomic conditions compared with other skeletal elements. It is highly 

recommended that the reliable estimates be considered, with over 95% probability of 

correct classification. However, with regard to estimates with 80-95% probability, the 

predictions should be treated with caution, and when the probability rate of the 

estimate is lower than 80%, the method should be considered unreliable and other 

methods should be used instead.   
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CHAPTER 9   CONCLUSION 

 

Odontometric standards for sex estimation are population specific in both time and 

space, and standards from one population may not work on another population. In 

addition, advances in technologies such as CT scanning have allowed for further 

examination of dental sexual dimorphism in modern and archaeological populations. 

CT scanning and 3D image analysis methods can be used for measuring and analysing 

both the internal and external structure of the tooth. Currently there is no odontometric 

reference data from Iranian populations; the present study contributes to the 

development of standards for sex estimation using two important Near Eastern 

archaeological sites in north-western Iran, Hasanlu and Dinkha Tepe. The present 

study aimed to examine the level of sexual dimorphism in the permanent teeth of 

Iranian archaeological populations using cervical and RV measurements, and to assess 

the applicability of these measurements in sex estimation based on discriminant 

function analysis. It also aimed to contribute to the growing knowledge of 3D imaging 

techniques in sex estimation and to help overcome methodological issues with 

traditional 2D odontometric methods. The tooth root volume was also introduced as a 

new parameter for sex estimation, which could be very helpful, particularly in 

archaeological and fragile samples. However, it would surely be worthwhile to 

examine the level of sexual dimorphism, particularly regarding the size differences 

between different skeletal elements, to have a better understanding of the level of 

sexual dimorphism in the Hasanlu and Dinkhah Tepe samples. 

 

The main conclusions of the present study using Hasanlu and Dinkha Tepe collections 

are summarised as follows:    

 

 Males had significantly larger teeth than females in all teeth and all 

measurements.  

 In general, maxillary teeth were more sexually dimorphic than mandibular 

teeth. 

 Incisors and canines in both jaws were the most sexually dimorphic teeth for 

all dimensions. This could be due to the significance of the canine in human 

evolution (see chapter three). 
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 In general, MD measurements were more sexually dimorphic than BL 

measurements in both 2D and 3D cervical measurements. 

 Classification accuracy was higher when both MD and BL variables were used 

together. 

 Discriminant function analysis showed the high sex classification accuracy 

rates of 2D and 3D cervical, and RV measurements in the Hasanlu and Dinkha 

Tepe collections. 

 The total classification accuracy rates ranged from 65.5% to 100% for 2D 

cervical measurements, 77.4% to 100% for 3D cervical measurements, and 

89.3% to 100% for RV measurements.    

 In general, classification accuracy was higher for males compared to females 

in all measurements. This may suggest that females have greater variation in 

tooth size, or it could simply be attributed to the smaller sample size of the 

females in some of the functions.  

 3D cervical measurements resolved the limitations of 2D cervical 

measurements and provided better sex classification results. 

 The volume of the tooth root demonstrated significant sexual dimorphism, and 

provided best sex classification percentages among all three sets of 

measurements.  

 Student t-tests showed no statistically significant differences between 2D and 

3D cervical measurements, and Pearson correlation also confirmed a very high 

positive correlation between these measurements.  

 Pearson correlation analysis also showed a positive correlation between 2D 

cervical and RV measurements, showing that both measurements yield the 

same biological information. 

 All three methods presented in this study showed excellent intra- and inter-

observer error results. 

 The cross-validation and bootstrap samples provided results similar or very 

close to the original results. 

 82.8% of the RV measurements, 51% of the 2D cervical measurements, and 

70.3% of the 3D cervical measurements provided posterior probabilities 

between 80% and 100%. 
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 3D methods are non-invasive and reduce the chances of damaging fragile and 

delicate archaeological samples. 3D technology also enables the user to obtain 

a variety of dental linear and volumetric measurements. 

 A high classification accuracy rate, excellent inter- and intra-observer error 

results, as well as 3D cervical method’s ability to overcome the limitations 

presented by Hillson et al. (2005), make it a reliable and effective technique 

for sex estimation in the Hasanlu and Dinkha Tepe collections. 

 RV measurement was found to be the most appropriate method for sexing the 

Hasanlu and Dinkha Tepe samples, as it provided the highest accuracy rates, 

excellent reliability, and presented fewer limitations, particularly compared to 

2D cervical measurements. 

 All the measurements used in the present study are considered very effective 

in sex estimation with regards to the Hasanlu and Dinkha Tepe collections, as 

they are not prone to pathological conditions such as dental wear, which is very 

common in archaeological samples.  

 

The findings of this study have allowed for a discussion of dental sexual dimorphism 

patterns in a rarely studied population, and introduced a novel sex estimation technique 

using CT images of permanent teeth. However, as with any study of these types of 

data, there are some limitations. One major issue is that of sampling. Within Hasanlu, 

not all the skeletons from the site were analysed in the study, and the skeletons which 

were included are not representative of the entire Hasanlu population. The sample size 

from Dinkha Tepe was also small and may not be representative of the larger 

population. Further excavation in the area and the inclusion of additional skeletons 

from Hasanlu and Dinkha Tepe would help greatly in supporting the conclusions 

drawn in this study. In addition, the sample sizes used in this study, particularly the 

3D analysis sample size, were small, therefore further studies using large, 

contemporary populations of known sex should be undertaken in order to test the 

methods and to assess their usefulness as a new methodology for sex estimation of 

skeletal remains.  
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The dental metric data provided by the present study could also be used to examine 

the biological relationships between and within the Hasanlu and Dinkha Tepe 

collections, or might even be helpful for identification of invaders and locals in the 

site. The detailed analysis of the patterns of dental wear could also be used to study 

the health, diet or habitual activities of the Hasanlu and Dinkha Tepe individuals. The 

data presented in this study is a good start for conducting more sex estimation studies 

in either modern or archaeological Iranian populations, and also offers an effective 

comparative basis for other Near Eastern Iron Age period samples. The hope is that 

this work will be a valuable contribution to the validation of the available technologies 

in odontometric sex assessment, and also that it will introduce new methodologies 

regarding the quantification of 3D volumetric data, as well as anatomically precise 3D 

dental models. In addition, one of the more modern applications of the sex estimation 

techniques provided in this study could be the identification of unidentified human 

remains from the eight-year war between Iran and Iraq in the 1980s that resulted in the 

loss of a hundred thousand lives. This becomes even more significant when 

considering the fact that teeth are the most durable substance in the human body. 

Furthermore, as this study has shown, the sex of individuals can be estimated even 

using the volume of the tooth root, which can be very useful in the case of bodies that 

are beyond recognition due to decomposition, severe burning, mechanical trauma, etc. 

In such cases the odontometric methods proposed in this study could be a very useful 

and reliable complement to other sex identification methods, such as DNA analysis.     
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Table 1. TEM and rTEM results evaluating intra-observer error in 2D cervical 

measurements  

Measurements N Measurement 1 Measurement 2 Diff TEM rTEM R 

  Mean SD Mean SD     

Mesiodistal          

UI1 36 6.18 0.59 6.19 0.59 -0.01 0.03 0.45 1 

LI1 25 3.51 0.18 3.51 0.18 0 0.02 0.58 0.99 

UI2 36 4.77 0.44 4.77 0.44 0 0.03 0.61 1 

LI2 39 3.86 0.36 3.87 0.36 -0.01 0.04 0.78 0.99 

UC 37 5.48 0.57 5.48 0.57 0 0.03 0.53 1 

LC 48 5.3 0.6 5.31 0.6 -0.01 0.03 0.49 1 

UP3 38 4.59 0.38 4.6 0.4 -0.01 0.04 0.72 0.99 

LP3 50 4.82 0.33 4.83 0.33 -0.01 0.03 0.55 0.99 

UP4 42 4.84 0.82 4.85 0.82 -0.01 0.03 0.65 1 

LP4 38 5.08 0.87 5.08 0.86 0 0.04 0.47 1 

UM1 48 7.66 0.56 7.66 0.55 0 0.04 0.39 1 

LM1 31 8.85 0.52 8.86 0.53 -0.01 0.03 0.26 1 

UM2 42 7.55 0.7 7.56 0.71 -0.01 0.04 0.45 1 

LM2 22 9.01 0.65 9.02 0.64 -0.02 0.03 0.36 1 

UM3 18 6.88 1 6.88 1.02 0 0.04 0.54 1 

LM3 31 8.8 0.85 8.81 0.86 0 0.03 0.36 1 

Buccolingual          

UI1 36 6.32 0.62 6.33 0.62 -0.01 0.03 0.48 1 

LI1 22 5.64 0.37 5.64 0.37 0 0.03 0.49 0.99 

UI2 36 5.64 0.43 5.64 0.43 0 0.02 0.44 1 

LI2 39 6.04 0.34 6.05 0.35 -0.01 0.03 0.47 0.99 

UC 37 7.81 0.8 7.81 0.8 0 0.03 0.33 1 

LC 48 7.41 0.56 7.41 0.56 0 0.02 0.31 1 

UP3 38 8.07 0.61 8.08 0.61 -0.01 0.03 0.38 1 

LP3 50 6.72 0.41 6.72 0.42 0 0.03 0.45 0.99 

UP4 42 8.29 0.83 8.28 0.82 0.01 0.03 0.39 1 

LP4 38 7.14 0.57 7.14 0.58 0 0.03 0.35 1 

UM1 41 9.93 0.56 9.93 0.56 -0.01 0.03 0.29 1 

LM1 40 8.71 0.63 8.71 0.61 0 0.03 0.33 1 

UM2 39 9.8 1.03 9.81 1.03 -0.01 0.03 0.32 1 

LM2 37 8.18 0.77 8.17 0.76 0.01 0.03 0.38 1 

UM3 25 9.6 0.82 9.59 0.81 0.01 0.03 0.36 1 

LM3 31 8.1 0.7 8.11 0.7 -0.01 0.03 0.39 1 
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Table 2. TEM and rTEM results evaluating intra-observer error in 3D cervical 

measurements 

Measurements N Measurement 1 Measurement 2 Diff TEM rTEM R 

  Mean SD Mean SD     

Mesiodistal          

UI1 22 6.28 0.62 6.27 0.63 0 0.03 0.46 1 

LI1 26 3.5 0.24 3.52 0.24 -0.01 0.02 0.7 0.99 

UI2 21 4.64 0.57 4.65 0.58 -0.01 0.03 0.56 1 

LI2 26 3.81 0.4 3.82 0.4 0 0.03 0.76 0.99 

UC 34 5.45 0.55 5.45 0.56 0 0.03 0.6 1 

LC 29 5.28 0.67 5.28 0.68 0 0.02 0.44 1 

UP3 34 4.55 0.48 4.56 0.48 -0.01 0.03 0.6 1 

LP3 32 4.71 0.44 4.7 0.46 0.01 0.03 0.62 1 

UP4 31 4.52 0.41 4.51 0.43 0.01 0.03 0.57 1 

LP4 30 4.93 0.51 4.92 0.51 0.01 0.02 0.5 1 

UM1 29 7.79 0.42 7.79 0.43 0 0.03 0.38 1 

LM1 29 8.81 0.55 8.82 0.55 -0.01 0.03 0.32 1 

UM2 29 7.66 0.69 7.65 0.68 0 0.03 0.38 1 

LM2 34 8.83 0.69 8.84 0.7 -0.01 0.03 0.37 1 

UM3 14 6.85 0.83 6.85 0.85 0 0.03 0.39 1 

LM3 21 8.98 0.75 8.97 0.75 0 0.03 0.29 1 

Buccolingual          

UI1 22 6.18 0.57 6.17 0.56 0 0.03 0.46 1 

LI1 26 5.32 0.38 5.3 0.37 0.01 0.03 0.58 0.99 

UI2 21 5.53 0.41 5.52 0.42 0.01 0.03 0.6 0.99 

LI2 26 5.67 0.4 5.66 0.41 0.01 0.02 0.43 1 

UC 34 7.51 0.7 7.51 0.69 0 0.03 0.35 1 

LC 29 7.07 0.93 7.07 0.92 0 0.03 0.45 1 

UP3 34 7.81 0.71 7.82 0.71 -0.01 0.03 0.41 1 

LP3 32 6.54 0.48 6.54 0.49 0 0.03 0.42 1 

UP4 31 7.82 0.76 7.82 0.77 0 0.03 0.37 1 

LP4 30 6.99 0.68 6.99 0.66 0 0.04 0.56 1 

UM1 29 9.8 0.69 9.79 0.69 0 0.03 0.28 1 

LM1 29 8.62 0.59 8.62 0.58 0 0.03 0.3 1 

UM2 29 9.95 0.83 9.94 0.82 0.01 0.03 0.29 1 

LM2 34 8.22 0.58 8.21 0.6 0 0.04 0.51 0.99 

UM3 14 9.1 0.86 9.1 0.87 0 0.03 0.32 1 

LM3 21 7.9 0.5 7.92 0.5 -0.01 0.03 0.33 1 
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Table 3. TEM and rTEM results evaluating intra-observer error in RV measurements  

Measurements N Measurement 1 Measurement 2 Diff TEM rTEM R 

  Mean SD Mean SD     

Root volume          

UI1 22 218.3 59.07 216.8 58.82 1.5 3.61 1.66 1 

LI1 26 99.13 19.37 98.4 19.09 0.73 1.94 1.97 0.99 

UI2 26 135.55 44.99 134.75 44.17 0.8 2.6 1.93 1 

LI2 24 128.36 28.58 128.98 28.48 -

0.62 

2.4 1.87 0.99 

UC 34 248.2 87.39 248.18 86.97 0.03 3.89 1.57 1 

LC 26 235.31 64.15 233.43 63.62 1.89 2.96 1.26 1 

UP3 34 164.73 50.75 163.52 50.14 0.95 3.09 1.88 1 

LP3 31 153.35 36.06 153.61 35.77 -

0.26 

2.81 1.83 0.99 

UP4 32 170.9 51.95 170.17 51.35 0.73 3.32 1.94 1 

LP4 30 184.49 48.88 184.79 48.62 -0.3 3.8 2.06 0.99 

UM1 28 429.91 99.69 428.99 98.6 0.92 4.16 0.97 1 

LM1 29 411.4 80.98 415.07 79.65 0.73 3.77 0.91 1 

UM2 31 399.02 108.83 399.65 108.15 -

0.63 

4.59 1.15 1 

LM2 32 368.17 80.77 368.08 82.95 0.09 3.76 1.02 1 

UM3 10 310.27 104.71 312.3 108.99 -

2.02 

4.65 1.49 1 

LM3 20 330 85.43 329.29 86.15 0.71 3.66 1.11 1 
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Table 4. TEM and rTEM results evaluating inter-observer error in 2D cervical 

measurements  

Measurements N Measurement 1  Measurement 2 Diff TEM rTEM R 

    Mean SD Mean SD         

Mesiodistal                   

UI1 26 6.21 0.52 6.22 0.52 -0.01 0.04 0.57 1 

LI1 21 3.44 0.18 3.43 0.19 0.01 0.03 0.75 0.98 

UI2 28 4.65 0.55 5.64 0.57 0.01 0.05 0.75 1 

LI2 27 3.89 0.44 3.9 0.44 -0.01 0.03 0.87 0.99 

UC 30 5.39 0.59 5.38 0.59 0.01 0.04 0.68 1 

LC 31 5.22 0.53 5.22 0.53 0.01 0.04 0.69 1 

UP3 29 4.6 0.51 4.62 0.51 -0.01 0.04 0.76 1 

LP3 28 4.58 0.45 4.56 0.45 0.01 0.03 0.76 0.99 

UP4 30 4.81 0.46 4.81 0.44 0 0.04 0.75 0.99 

LP4 27 4.76 0.44 4.75 0.44 0.01 0.04 0.83 0.99 

UM1 27 7.69 0.58 7.69 0.56 0 0.05 0.56 0.99 

LM1 29 8.53 0.68 8.53 0.65 0 0.04 0.52 1 

UM2 28 7.13 0.6 7.15 0.6 -0.02 0.05 0.62 0.99 

LM2 25 8.48 0.63 8.46 0.65 0.02 0.05 0.57 0.99 

  UM3a 14 6.61 1.3 6.64 1.31 -0.02 0.04 0.61 1 

LM3 20 8.27 0.82 8.25 0.81 0.02 0.05 0.54 1 

Buccolingual                   

UI1 26 6.17 0.8 6.17 0.8 0.01 0.04 0.58 1 

LI1 21 5.43 0.51 5.44 0.5 -0.01 0.04 0.68 0.99 

UI2 28 5.61 0.51 5.61 0.5 0 0.03 0.61 1 

LI2 27 5.9 0.38 5.9 0.36 0 0.04 0.65 0.99 

UC 30 7.32 0.73 7.32 0.75 0 0.04 0.49 1 

LC 31 7.24 0.63 7.24 0.62 -0.01 0.03 0.44 1 

UP3 29 7.61 0.54 7.6 0.54 0 0.04 0.56 0.99 

LP3 28 6.25 0.54 6.23 0.54 0.02 0.04 0.69 0.99 

UP4 30 7.83 0.97 7.84 0.96 -0.01 0.04 0.55 1 

LP4 27 7.01 0.76 7.01 0.75 0 0.05 0.71 1 

UM1 27 9.83 0.54 9.85 0.52 -0.02 0.04 0.46 0.99 

LM1 29 8.83 0.69 8.82 0.68 0.01 0.04 0.53 1 

UM2 28 9.58 0.82 9.58 0.82 0 0.04 0.52 1 

LM2 25 8.75 0.8 8.74 0.82 0.01 0.04 0.49 1 

  UM3a 14 8.92 0.77 8.86 0.81 0.06 0.04 0.62 1 

LM3 20 8.78 0.96 8.8 0.94 -0.02 0.04 0.48 1 
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Table 5. TEM and rTEM results evaluating inter-observer error in 3D cervical 

measurements 

Measurements N Measurement 1  Measurement 2 Diff TEM rTEM R 

    Mean SD Mean SD         

Mesiodistal                   

UI1 19 6.27 0.63 6.25 0.63 0.01 0.04 0.61 1 

LI1 21 3.5 0.23 3.51 0.24 -0.01 0.03 0.9 0.98 

UI2 20 4.63 0.59 4.64 0.6 -0.01 0.04 0.78 1 

LI2 20 3.78 0.37 3.78 0.37 0 0.03 0.88 0.99 

UC 24 5.48 0.56 5.48 0.59 0 0.04 0.77 1 

LC 23 5.15 0.57 5.14 0.58 0.02 0.03 0.59 1 

UP3 24 4.56 0.43 4.56 0.42 -0.01 0.04 0.8 0.99 

LP3 22 4.61 0.42 4.59 0.44 0.02 0.04 0.79 0.99 

UP4 22 4.45 0.39 4.42 0.4 0.03 0.04 0.81 0.99 

LP4 23 4.83 0.46 4.81 0.46 0.02 0.04 0.77 0.99 

UM1 24 7.77 0.45 7.76 0.45 0.01 0.04 0.5 0.99 

LM1 23 8.75 0.57 8.75 0.57 0 0.04 0.44 1 

UM2 24 7.63 0.73 7.61 0.72 0.02 0.03 0.46 1 

LM2 24 8.74 0.75 8.73 0.75 0.01 0.04 0.43 1 

  UM3 8 6.36 0.64 6.35 0.69 0.01 0.04 0.7 1 

LM3 13 8.96 0.84 8.95 0.84 0.02 0.05 0.51 1 

Buccolingual                   

UI1 19 6.12 0.52 6.12 0.5 0 0.04 0.61 0.99 

LI1 21 5.3 0.36 5.28 0.34 0.02 0.04 0.66 0.99 

UI2 20 5.5 0.4 5.48 0.4 0.02 0.04 0.75 0.99 

LI2 20 5.6 0.39 5.58 0.39 0.02 0.03 0.6 0.99 

UC 24 7.65 0.69 7.65 0.67 0 0.03 0.45 0.99 

LC 23 7.09 0.76 7.08 0.75 0.01 0.04 0.62 1 

UP3 24 7.94 0.72 7.94 0.73 0 0.04 0.49 1 

LP3 22 6.46 0.51 6.46 0.52 0 0.04 0.54 1 

UP4 22 7.87 0.83 7.85 0.83 0.02 0.04 0.5 1 

LP4 23 6.93 0.72 6.92 0.73 0.01 0.03 0.5 1 

UM1 24 9.74 0.74 9.73 0.75 0.01 0.03 0.34 1 

LM1 23 8.56 0.56 8.55 0.55 0.01 0.03 0.4 1 

UM2 24 9.89 0.89 9.88 0.88 0.01 0.04 0.36 1 

LM2 24 8.16 0.59 8.16 0.61 0 0.05 0.62 0.99 

  UM3 8 9.13 1 9.1 1 0.03 0.04 0.44 1 

LM3 13 7.88 0.4 7.91 0.43 -0.03 0.04 0.57 0.99 

 

 

 

 



258 
 

Table 6. TEM and rTEM results evaluating inter-observer error in RV measurements  

Measurements N Measurement 1 Measurement 2 Diff TEM rTEM R 

  Mean SD Mean SD     

Volume          

UI1 20 227.31 53.34 225.49 52.02 1.82 4.8 2.12 0.99 

LI1 21 100.14 17.7 100.29 18.46 -0.16 2.21 2.2 0.98 

UI2 23 147.33 37.12 145.92 35.93 1.41 3.33 2.27 0.99 

LI2 20 127.78 24.89 126.48 23.42 1.3 2.77 2.18 0.99 

UC 25 249.5 86.28 249.14 84.89 0.36 4.63 1.86 1 

LC 22 247.09 69.42 246.18 69.6 0.91 3.69 1.5 1 

UP3 22 152.41 34.9 152.09 34.68 0.32 3.05 2.01 0.99 

LP3 24 161.08 38.31 162.22 37.26 -1.14 3.2 1.98 0.99 

UP4 24 174.6 51.38 173.48 49.79 1.12 3.9 2.24 0.99 

LP4 23 186.36 52.64 185.93 52.79 0.43 4.13 2.22 0.99 

UM1 25 432.25 73.76 432.17 73.57 0.07 4.56 1.06 1 

LM1 23 429.04 87.83 429.32 88.96 -0.27 4.24 0.99 1 

UM2 24 410.3 112.62 409.84 111.6 0.46 4.98 1.21 1 

LM2 22 384.16 90.85 384.99 92.22 -0.83 4.23 1.1 1 

UM3 6 277.94 85.49 278.91 87.43 -0.97 4.71 1.69 1 

LM3 12 322.62 67.65 320.64 69.76 1.97 4.46 1.39 1 
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Table 7. Independent student t-test comparing the means between Hasanlu and Dinkha Tepe 

collections including original and bootstrap samples– 2D cervical measurements. 

Measurements Hasanlu Dinkha Tepe t-

value 

p-

value 

Bootstrap 

p-value 

 N Mean SD N Mean SD    

Mesiodistal          

UI1 44 6.30 0.55 8 6.05 0.42 1.21 0.23 0.13 

LI1 55 3.52 0.25 20 3.49 0.21 0.32 0.75 0.72 

UI2 43 4.85 0.44 12 4.62 0.47 1.64 0.10 0.14 

LI2 68 3.85 0.32 23 3.97 0.33 -1.48 0.14 0.17 

UC 64 5.60 0.50 20 5.53 0.54 0.55 0.58 0.59 

LC 75 5.31 0.50 27 5.43 0.60 -0.99 0.32 0.34 

UP3 71 4.56 0.39 16 4.58 0.50 -0.20 0.84 0.86 

LP3 84 4.73 0.37 27 4.84 0.37 -1.41 0.16 0.16 

UP4 64 4.69 0.39 19 4.76 0.44 -0.71 0.48 0.48 

LP4 80 4.97 0.41 24 5.13 0.38 -1.69 0.09 0.08 

UM1 67 7.72 0.45 17 7.73 0.36 -0.14 0.88 0.87 

LM1 73 8.89 0.56 22 9.00 0.53 -0.75 0.46 0.43 

UM2 62 7.47 0.71 20 7.71 0.66 -1.30 0.20 0.18 

LM2 79 8.88 0.73 28 8.95 0.62 -0.45 0.65 0.62 

UM3 33 6.78 0.59 13 7.37 0.57 -2.99 0.00 0.00 

LM3 47 8.57 0.91 21 8.96 0.90 -1.63 0.11 0.10 

Buccolingual          

UI1 44 6.29 0.40 8 6.07 0.56 1.32 0.19 0.28 

LI1 55 5.54 0.38 20 5.45 0.34 0.90 0.37 0.36 

UI2 43 5.73 0.45 12 5.52 0.46 1.41 0.16 0.16 

LI2 68 6.00 0.35 23 5.97 0.39 0.30 0.77 0.80 

UC 63 7.87 0.62 20 7.57 0.65 1.33 0.19 0.12 

LC 74 7.45 0.59 27 7.45 0.70 0.00 1.00 1.00 

UP3 71 7.98 0.58 16 7.75 0.56 1.47 0.15 0.15 

LP3 84 6.65 0.52 26 6.75 0.60 -0.87 0.39 0.41 

UP4 64 8.19 0.72 19 7.99 0.51 1.14 0.26 0.16 

LP4 80 7.08 0.65 23 7.32 0.57 -1.61 0.11 0.08 

UM1 66 9.96 0.61 17 9.87 0.47 0.54 0.59 0.53 

LM1 74 8.71 0.62 22 8.78 0.65 -0.45 0.65 0.66 

UM2 62 9.82 0.82 20 10.05 0.70 -1.11 0.27 0.22 

LM2 79 8.30 0.71 27 8.33 0.65 -0.24 0.81 0.80 

UM3 32 9.44 0.92 13 9.22 0.95 0.71 0.48 0.49 

LM3 47 7.95 0.55 21 8.03 0.59 -0.55 0.59 0.59 
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Table 8. Independent student t-test comparing the means between Hasanlu and Dinkha Tepe 

collections including original and bootstrap samples– 3D cervical measurements. 

Measurements Hasanlu Dinkha Tepe t-

value 

p-

value 

Bootstrap 

p-value 

 N Mean SD N Mean SD    

Mesiodistal          

UI1 15 6.34 0.59 7 6.17 0.53 0.65 0.53 0.49 

LI1 12 3.54 0.24 15 3.5 0.24 0.46 0.65 0.66 

UI2 13 4.81 0.48 9 4.4 0.56 1.84 0.08 0.09 

LI2 12 3.83 0.37 14 3.81 0.39 -0.05 0.96 0.96 

UC 21 5.51 0.52 14 5.34 0.58 0.95 0.35 0.35 

LC 14 5.16 0.56 16 5.21 0.58 -0.25 0.81 0.8 

UP3 23 4.58 0.41 12 4.57 0.54 0.03 0.98 0.98 

LP3 17 4.64 0.44 17 4.83 0.39 -1.33 0.19 0.19 

UP4 19 4.54 0.32 12 4.59 0.44 -0.33 0.75 0.75 

LP4 17 4.85 0.52 15 5.03 0.42 -1.12 0.27 0.28 

UM1 20 7.76 0.45 10 7.8 0.44 -0.23 0.82 0.8 

LM1 16 8.66 0.57 14 8.52 0.45 0.74 0.47 0.45 

UM2 20 7.63 7.42 10 7.78 0.54 -0.57 0.57 0.52 

LM2 18 8.15 0.59 18 8.31 0.58 -0.81 0.42 0.42 

UM3 7 6.4 0.68 7 7.29 0.76 -2.33 0.04 0.05 

LM3 6 7.9 0.44 16 7.93 0.48 -0.13 0.9 0.91 

Buccolingual          

UI1 15 6.27 0.41 7 6.32 0.7 -0.23 0.82 0.86 

LI1 12 5.44 0.38 15 5.29 0.33 1.14 0.26 0.28 

UI2 13 5.65 0.4 9 5.39 0.4 1.49 0.15 0.17 

LI2 12 5.75 0.4 14 5.76 0.31 0.16 0.88 0.87 

UC 21 7.66 0.7 14 7.36 0.57 1.3 0.2 0.16 

LC 14 7.17 0.78 16 7.18 0.77 -0.03 0.97 0.97 

UP3 23 8.01 0.65 12 7.59 0.48 1.97 0.07 0.06 

LP3 17 6.5 0.5 17 6.64 0.42 -0.86 0.4 0.42 

UP4 19 8.02 0.85 12 7.74 0.48 1.05 0.3 0.24 

LP4 16 7.12 0.64 15 7.08 0.46 0.19 0.84 0.84 

UM1 20 9.87 0.64 10 9.65 0.51 0.95 0.35 0.29 

LM1 16 8.81 0.64 14 8.85 0.38 -0.19 0.85 0.84 

UM2 20 9.99 0.79 10 10.02 0.74 -0.1 0.92 0.92 

LM2 18 8.74 0.78 18 8.99 0.49 -1.13 0.27 0.29 

UM3 7 9.26 0.99 7 8.98 0.69 0.6 0.56 0.54 

LM3 6 8.67 0.78 16 9.07 0.69 -1.16 0.26 0.28 
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Table 9. Independent student t-test comparing the means between Hasanlu and Dinkha Tepe 

collections including original and bootstrap samples– root volume measurements. 

Measurements Hasanlu Dinkha Tepe t-

value 

p-

value 

Bootstrap 

p-value 

 N Mean SD N Mean SD    

UI1 14 219.13 53.35 7 192.24 64.35 1.02 0.32 0.35 

LI1 14 102.66 20.14 15 100.58 16.68 0.30 0.76 0.79 

UI2 14 153.85 41.71 11 127.77 47.88 0.32 0.16 0.16 

LI2 15 129.44 29.93 14 128.88 31.45 0.05 0.96 0.97 

UC 20 258.92 88.19 15 228.77 83.15 1.03 0.31 0.32 

LC 16 224.36 63.24 16 243.45 61.58 -0.87 0.39 0.42 

UP3 23 161.73 39.37 18 145.60 41.99 1.26 0.21 0.22 

LP3 19 153.39 32.59 18 161.63 34.51 -0.75 0.46 0.47 

UP4 19 166.85 35.77 14 169.08 44.73 -0.16 0.88 0.88 

LP4 17 181.60 52.83 15 191.61 33.11 -0.63 0.53 0.53 

UM1 19 444.34 79.79 11 420.62 84.92 0.77 0.45 0.44 

LM1 15 415.37 85.59 15 440.87 60.95 -0.94 0.36 0.36 

UM2 21 406.79 106.81 10 406.06 79.19 0.02 0.99 0.98 

LM2 18 366.23 91.69 18 397.43 68.00 -1.16 0.25 0.25 

UM3 7 260.90 49.86 7 277.73 40.93 -0.69 0.50 0.53 

LM3 9 323.73 78.21 15 317.01 68.04 0.22 0.83 0.83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



262 
 

Table 10: Paired student t-test comparing the means between right and left side teeth- 

Females, 2D cervical measurements. 

Measurements N Average SD t- value p value 

Mesiodistal          

URI1 12 6.38 0.35 
-0.65 0.53 

ULI1 12 6.41 0.41 

URI2 11 4.58 0.44 
1.71 0.12 

ULI2 11 4.51 0.44 

URC 15 5.30 0.44 
-1.21 0.25 

ULC 15 5.33 0.45 

URP3 17 4.26 0.38 
-1.31 0.21 

ULP3 17 4.34 0.48 

URP4 14 4.70 0.84 
1.17 0.26 

ULP4 14 4.47 0.29 

URM1 16 7.53 0.30 
1.18 0.26 

ULM1 16 7.50 0.33 

URM2 13 7.25 0.57 
1.09 0.30 

ULM2 13 7.18 0.56 

URM3 5 6.96 0.85 
0.46 0.67 

ULM3 5 6.94 0.77 

LRI1 14 3.40 0.23 
0.27 0.79 

LLI1 14 3.40 0.22 

LRI2 20 3.79 0.32 
0.1 0.92 

LLI2 20 3.78 0.29 

LRC 22 4.98 0.39 
0.67 0.51 

LLC 22 4.97 0.41 

LRP3 24 4.61 0.33 
1.2 0.24 

LLP3 24 4.54 0.39 

LRP4 19 4.84 0.38 
0.11 0.91 

LLP4 19 4.84 0.42 

LRM1 18 8.69 0.64 
0.81 0.43 

LLM1 18 8.57 0.67 

LRM2 16 8.39 0.55 
0.99 0.34 

LLM2 16 7.88 2.17 

LRM3 6 8.45 1.33 
-0.24 0.82 

LLM3 6 8.48 1.29 

Buccolingual           

URI1 12 6.25 0.37 
-0.71 0.49 

ULI1 12 6.29 0.32 

 

Continued 
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Table 10 continued 

  

Measurements N Average SD t- value p value 

URI2 11 5.61 0.43 
-1.14 0.28 

ULI2 11 5.63 0.43 

URC 15 7.38 0.83 
-0.90 0.38 

ULC 15 7.50 0.62 

URP3 17 7.65 0.66 
0.61 0.55 

ULP3 17 7.63 0.67 

URP4 14 7.95 0.65 
1.32 0.21 

ULP4 14 7.89 0.63 

URM1 16 9.56 0.31 
0.71 0.49 

ULM1 16 9.42 0.81 

URM2 13 9.27 0.60 
1.06 0.31 

ULM2 13 9.17 0.84 

URM3 5 9.28 0.48 
1.18 0.30 

ULM3 5 9.05 0.29 

LRI1 14 5.38 0.34 
-1.00 0.34 

LLI1 14 5.41 0.30 

LRI2 20 5.87 0.38 
1.21 0.24 

LLI2 20 5.85 0.37 

LRC 22 7.18 0.58 
0.50 0.62 

LLC 22 7.16 0.49 

LRP3 24 6.45 0.40 
1.33 0.20 

LLP3 24 6.42 0.44 

LRP4 19 7.07 0.54 
-0.11 0.91 

LLP4 19 7.07 0.55 

LRM1 18 8.40 0.52 
0.86 0.40 

LLM1 18 7.99 2.06 

LRM2 16 7.82 0.51 
-1.89 0.08 

LLM2 16 7.89 0.49 

LRM3 6 7.52 0.54 
-1.55 0.18 

LLM3 6 7.70 0.69 

 

 

 

 

 

 



264 
 

Table 11: Paired student t-test comparing the means between right and left side teeth- Males, 

2D cervical measurements. 

Measurements N Average SD t- value p value 

Mesiodistal       

URI1 17 6.26 0.40 
-0.35 0.73 

ULI1 17 6.27 0.41 

URI2 15 4.73 0.29 
-0.77 0.45 

ULI2 15 4.76 0.29 

URC 34 5.84 0.38 
-0.15 0.89 

ULC 34 5.85 0.41 

URP3 32 4.68 0.34 
-0.63 0.53 

ULP3 32 4.71 0.43 

URP4 25 4.75 0.35 
-1.2 0.24 

ULP4 25 4.77 0.36 

URM1 28 7.82 0.41 
0.76 0.46 

ULM1 28 7.78 0.46 

URM2 26 7.78 0.61 
1.89 0.07 

ULM2 26 7.72 0.54 

URM3 13 7.02 0.82 
-1.62 0.13 

ULM3 13 7.18 0.79 

LRI1 27 3.60 0.17 
-0.19 0.85 

LLI1 27 3.60 0.15 

LRI2 35 4.06 0.32 
-0.93 0.36 

LLI2 35 4.08 0.33 

LRC 42 5.54 0.44 
-1.57 0.12 

LLC 42 5.60 0.44 

LRP3 48 4.92 0.31 
-0.93 0.36 

LLP3 48 4.95 0.37 

LRP4 50 5.11 0.38 
0.83 0.41 

LLP4 50 5.01 0.82 

LRM1 49 8.94 0.69 
-0.7 0.49 

LLM1 49 9.00 0.51 

LRM2 49 9.09 0.60 
-0.63 0.53 

LLM2 49 9.11 0.63 

LRM3 19 8.89 0.89 
1.55 0.14 

LLM3 19 8.77 0.82 

Buccolingual           

URI1 17 0.83 0.83 
-0.91 0.38 

ULI1 17 0.41 0.41 
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Table 11 continued  

 

Measurements N Average SD t- value p value 

URI2 15 5.71 0.40 
0.50 0.62 

ULI2 15 5.67 0.39 

UC 34 8.05 0.55 
-0.03 0.98 

LC 34 8.05 0.49 

URP3 32 8.09 0.61 
-0.34 0.73 

ULP3 32 8.10 0.63 

URP4 25 8.38 0.68 
0.09 0.93 

ULP4 25 8.38 0.66 

URM1 28 10.00 0.84 
-0.30 0.76 

ULM1 28 10.05 0.78 

URM2 26 10.14 0.76 
0.95 0.35 

ULM2 26 10.02 1.09 

URM3 13 9.84 0.94 
0.16 0.88 

ULM3 13 9.81 1.03 

LRI1 27 5.66 0.33 
1.00 0.33 

LLI1 27 5.64 0.34 

LRI2 35 6.11 0.28 
1.44 0.16 

LLI2 35 6.08 0.31 

LRC 42 7.67 0.51 
1.23 0.23 

LLC 42 7.59 0.62 

LRP3 48 6.90 0.48 
1.48 0.15 

LLP3 48 6.84 0.60 

LRP4 50 7.29 0.61 
1.66 0.10 

LLP4 50 7.27 0.61 

LRM1 49 8.88 0.55 
-1.00 0.32 

LLM1 49 27.84 132.44 

LRM2 49 8.54 0.55 
-1.75 0.09 

LLM2 49 8.59 0.52 

LRM3 19 8.33 0.65 
-1.60 0.13 

LLM3 19 8.42 0.71 
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Table 12. Paired student t-test comparing the means between 2D and 3D cervical 

measurements including original and bootstrap samples.  

Measurements 2D cervical 3D cervical t-value p-value Bootstrap 

p-value 

Mesiodistal N Mean SD N Mean SD  

UI1 21 6.28 0.51 21 6.28 0.58 0.03 0.98 0.98 

LI1 23 3.49 0.23 23 3.49 0.23 -0.19 0.84 0.84 

UI2 20 4.68 0.50 20 4.59 0.55 1.97 0.06 0.06 

LI2 24 3.85 0.35 24 3.83 0.38 1.03 0.31 0.31 

UC 33 5.45 0.51 33 5.43 0.51 1.02 0.32 0.32 

LC 30 5.20 0.56 30 5.19 0.56 0.81 0.43 0.43 

UP3 30 4.58 0.43 30 4.59 0.43 -0.39 0.70 0.71 

LP3 34 4.73 0.37 34 4.73 0.42 -0.22 0.83 0.82 

UP4 29 4.61 0.36 29 4.57 0.36 2.00 0.06 0.06 

LP4 32 4.95 0.44 32 4.93 0.47 0.94 0.36 0.33 

UM1 25 7.76 0.42 25 7.77 0.41 -0.32 0.75 0.75 

LM1 28 8.89 0.51 28 8.87 0.52 0.71 0.48 0.46 

UM2 28 7.63 0.61 28 7.63 0.66 0.19 0.85 0.84 

LM2 35 8.88 0.62 35 8.83 0.62 2.24 0.03 0.03 

UM3 14 6.88 0.85 14 6.85 0.83 1.51 0.16 0.16 

LM3 21 9.00 0.77 21 8.97 0.74 1.53 0.14 0.12 

Buccolingual          

UI1 21 6.27 0.40 21 6.25 0.48 1.10 0.23 0.28 

LI1 23 5.38 0.33 23 5.36 0.36 0.79 0.44 0.43 

UI2 20 5.58 0.47 20 5.54 0.43 1.45 0.16 0.16 

LI2 24 5.83 0.36 24 5.78 0.34 1.99 0.06 0.07 

UC 33 7.58 0.63 33 7.54 0.66 1.68 0.10 0.10 

LC 29 7.28 0.74 29 7.22 0.72 2.42 0.20 0.03 

UP3 30 7.91 0.68 30 7.91 0.64 -0.11 0.91 0.91 

LP3 34 6.58 0.48 34 6.57 0.46 0.13 0.90 0.90 

UP4 29 7.95 0.75 29 7.92 0.74 1.25 0.22 0.22 

LP4 31 7.15 0.55 31 7.1 0.55 1.81 0.08 0.08 

UM1 25 9.75 0.63 25 9.79 0.58 -1.38 0.18 0.17 

LM1 28 8.62 0.52 28 8.63 0.51 -0.80 0.44 0.44 

UM2 28 9.90 0.76 28 9.97 0.77 -3.07 0.00 0.02 

LM2 35 8.19 0.60 35 8.22 0.59 -1.40 0.17 0.17 

UM3 14 9.16 0.86 14 9.12 0.83 1.11 0.23 0.31 

LM3 21 7.96 0.51 21 7.95 0.45 0.24 0.81 0.82 
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Table 13. Classification accuracy of original and bootstrapped samples- 3D cervical 

measurements- direct discriminant analysis 

Functions Predicted Group Membership 

 Original 3D cervical measurements 

 Original % Cross-validated % 

 Male Female Total Male Female Total 

F16:UI1 100 71.4 90.9 93.3 71.4 86.4 

F17:LI1 86.7 100 92.6 86.7 100 92.6 

F18:UI2 100 100 100 100 100 100 

F19:LI2 86.7 100 92.3 86.7 100 92.3 

F20:UC 95 100 97.1 95 100 97.1 

F21:LC 94.7 100 96.7 94.7 100 96.7 

F22:UP3 85.7 92.9 88.6 85.7 92.9 88.6 

F23:LP3 85 78.6 82.4 85 78.6 82.4 

F24:UP4 81.3 86.7 83.9 81.3 86.7 83.9 

F25:LP4 90 72.7 83.9 85 72.7 80.6 

F26:UM1 88.2 100 93.3 88.2 100 93.3 

F27:LM1 82.4 84.6 83.3 82.4 76.9 80 

F28:UM2 90.5 88.9 90 90.5 88.9 90 

F29:LM2 85.7 86.7 86.1 85.7 80 83.3 

 Bootstrap 3D cervical measurements* 

F16:UI1 100 71.4 90.9 93.3 71.4 86.4 

F17:LI1 85.7 100 92.3 85.7 100 92.3 

F18:UI2 100 100 100 100 100 100 

F19:LI2 86.7 100 92.3 86.7 100 92.3 

F20:UC 94.7 100 97.1 94.7 93.3 94.1 

F21:LC 88.2 100 92.9 88.2 100 92.9 

F22:UP3 85 92.9 88.2 85 92.9 88.2 

F23:LP3 83.3 85.7 84.4 83.3 78.6 81.3 

F24:UP4 80 86.7 83.3 80 86.7 83.3 

F25:LP4 90 72.7 83.9 85 72.7 80.6 

F26:UM1 87.5 100 93.1 67.5 100 93.1 

F27:LM1 80 84.6 82.1 80 76.9 78.6 

F28:UM2 90.5 88.9 90 90.5 88.9 90 

F29:LM2 84.2 86.7 85.3 78.9 80 79.4 

*Based on 1000 bootstrapped samples. 
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Table 14. Classification accuracy of original and bootstrapped samples- univariate 

discriminant analysis of 3D cervical MD measurements. 
Functions Predicted Group Membership 

 Original 3D cervical measurements 

 Original % Cross-validated % 

MD Male Female Total Male Female Total 

F103: UI1 86.7 71.4 81.8 86.7 71.4 81.8 

F104: LI1 86.7 100 92.6 86.7 100 92.6 

F105: UI2 100 87.5 95.5 100 87.5 95.5 

F106: LI2 86.7 100 92.3 86.7 100 92.3 

F107: UC 95 93.3 94.3 95 93.3 94.3 

F108: LC 94.7 90 93.3 89.5 90.9 90 

F109: UP3 85.7 92.9 88.6 85.7 92.9 88.6 

F110: LP3 85 92.9 88.2 85 85.7 85.3 

F111: UP4 81.3 80 80.6 81.3 80 80.6 

F112: LP4 90 75 84.4 90 75 84.4 

F113: UM1 94.1 100 96.7 94.1 100 96.7 

F114: LM1 82.4 69.2 76.7 82.4 69.2 76.7 

F115: UM2 85.7 66.7 80 81 66.7 76.7 

F116: LM2 85.7 66.7 77.8 85.7 66.7 77.8 

 Bootstrap* 3D cervical measurements 

F103: UI1 86.7 71.4 81.8 86.7 71.4 81.8 

F104: LI1 85.7 100 92.3 85.7 100 92.3 

F105: UI2 100 87.5 95.5 100 87.5 95.5 

F106: LI2 86.7 100 92.3 86.7 100 92.3 

F107: UC 95 93.3 94.3 95 93.3 94.3 

F108: LC 94.7 90 93.3 89.5 90.9 90 

F109: UP3 85 92.9 88.2 85 92.9 88.2 

F110: LP3 83.3 92.9 87.5 83.3 92.9 87.5 

F111: UP4 80 86.7 83.3 80 80 80 

F112: LP4 88.9 75 83.3 88.9 75 83.3 

F113: UM1 93.8 100 96.6 93.8 92.3 93.1 

F114: LM1 80 69.2 75 80 69.2 75 

F115: UM2 85 66.7 79.3 80 66.7 79.3 

F116: LM2 84.2 66.7 76.5 84.2 66.7 76.5 

*Based on 1000 bootstrapped samples. 
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Table 15. Classification accuracy of original and bootstrapped samples- univariate 

discriminant analysis of 3D cervical BL measurements. 

 
Functions Predicted Group Membership 

 Original 3D cervical measurements 

 Original % Cross-validated % 

BL Male Female Total Male Female Total 

F117: UI1 93.3 85.7 90.9 93.3 85.7 90.9 

F118: LI1 86.7 91.7 88.9 86.7 91.7 88.9 

F119: UI2 85.7 75 81.8 85.7 75 81.8 

F120: LI2 80 100 88.5 80 100 88.5 

F121: UC 85 73.3 80 85 73.3 80 

F122: LC 89.5 90.9 90 89.5 90.9 90 

F123: UP3 90.5 78.6 85.7 90.5 78.6 85.7 

F124: LP3 85 71.4 79.4 85 71.4 79.4 

F125: UP4 75 80 77.4 75 80 77.4 

F126: LP4 90 54.5 77.4 90 54.5 77.4 

F127: UM1 76.5 84.6 80 76.5 84.6 80 

F128: LM1 88.2 76.9 83.3 88.2 76.9 83.3 

F129: UM2 90.5 88.9 90 90.5 88.9 90 

F130: LM2 81 80 80.6 81 80 80.6 

F131: LM3 85.7 75 81.8 78.6 75 77.3 

 Bootstrap* 3D cervical measurements 

F117: UI1 93.3 85.7 90.9 93.3 85.7 90.9 

F118: LI1 85.7 91.7 88.5 85.7 91.7 88.5 

F119: UI2 84.6 75 81 84.6 75 81 

F120: LI2 80 100 88.5 80 100 88.5 

F121: UC 85 73.3 80 85 73.3 80 

F122: LC 88.2 90.9 89.3 88.2 90.9 89.3 

F123: UP3 90.5 78.6 85.7 90.5 78.6 85.7 

F124: LP3 83.3 71.4 78.1 83.3 71.4 78.1 

F125: UP4 73.3 86.7 83.3 73.3 80 76.7 

F126: LP4 90 54.5 77.4 90 54.5 77.4 

F127: UM1 75 84.6 79.3 75 84.6 79.3 

F128: LM1 86.7 76.9 82.1 86.7 76.9 82.1 

F129: UM2 90 88.9 89.7 90 88.9 89.7 

F130: LM2 78.9 80 79.4 78.9 80 79.4 

F131: LM3 84.6 75 81 76.9 75 76.2 

*Based on 1000 bootstrapped samples. 
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Fig 1. Maxillary and mandibular teeth, Skeleton (60-20-224), Low Mound (IV), Female, 

Middle Adult. 

 

Fig 2: Mandibular teeth, skeleton (60-20-222), Low Mound (IV), female, middle adult. 
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Fig 3: Maxillary and mandibular teeth, skeleton (58-4-103), Low Mound (IV), female, 

young adult. 

 

Fig 4: Mandibular teeth, skeleton (58-4-107), Low Mound (IV), male, old adult. 
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Fig 5: Mandibular teeth, skeleton (60-20-225), Low Mound (IV), female, young adult. 

 

 

Fig 6: Maxillary teeth, skeleton (59-4-105), High Mound (IVB), male, young adult.  



274 
 

 

Fig 7: Maxillary teeth, skeleton (59-4-109), Low Mound (V), male, old adult. 

 

 

Fig 8: Mandibular teeth, skeleton (60-20-229), Low Mound (IV), male, young adult 
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LIST OF HASANLU AND DINKHA TEPE SKELETONS 
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Museum number Period Location Age Sex* 

58-4-95 III/IV Low Mound MA F 

58-4-96 IV Low Mound MA I 

58-4-97 IV Low Mound AD I 

58-4-98 IV Low Mound CH I 

58-4-99 IV Low Mound YA M 

58-4-100 IV Low Mound SA I 

58-4-101 IV Low Mound OA I 

58-4-102 IV Low Mound MA F 

58-4-103 IV Low Mound YA F 

58-4-104 IV Low Mound OA I 

58-4-105 V? Low Mound MA F 

58-4-106 V Low Mound YA F 

58-4-107 IV Low Mound OA M 

58-4-108 IV Low Mound YA M 

58-4-109 V Low Mound OA M 

58-4-110 IV Low Mound SA I 

58-4-112 IV Low Mound OA M 

59-4-102 V Low Mound MA F 

59-4-103 V Low Mound MA F 

59-4-104 V Low Mound MA F 

59-4-105 IVB High Mound YA M 

59-4-106 IVB High Mound YA M 

59-4-107 IVB High Mound MA F 

59-4-110 IV High Mound MA M 

60-20-220 V Low Mound MA F 

60-20-221 IV Low Mound MA F 

60-20-222 IV Low Mound MA F 

60-20-223 V Low Mound MA M 

60-20-224 IV Low Mound MA F 

60-20-225 IV Low Mound YA F 

60-20-226 V Low Mound CH I 

60-20-227 V Low Mound OA F 

60-20-228 V Low Mound OA F 

60-20-229 IV Low Mound YA I 

60-20-231 IVB High Mound MA F 

60-20-232 IVB High Mound OA M 

60-20-233 IV Low Mound MA M 

60-20-235 IV Low Mound SA I 

60-20-236 V Low Mound OA M 
*Sex of the skeletons are based on conventional morphological analysis.  
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Museum number Period Location Age Sex 

61-5-340 IVB High Mound YA M 

61-5-341 IVB High Mound YA M 

61-5-343 IVB High Mound CH I 

61-5-345 IVB High Mound MA F 

61-5-346 IVB High Mound YA M 

61-5-347 IVB High Mound MA F 

61-5-348 IVB High Mound YA I 

63-5-301 IVB High Mound OA M 

63-5-302 IVB High Mound YA F 

63-5-303 IVB High Mound YA M 

63-5-305 IVB High Mound YA F 

63-5-307 IVB High Mound MA M 

63-5-308 IVB High Mound MA M 

63-5-309 IVB High Mound OA M 

63-5-310 IVB High Mound MA F 

63-5-311 IVB High Mound YA M 

63-5-312 IVB High Mound SA I 

63-5-313 IVB High Mound YA M 

63-5-314 IVB High Mound MA M 

63-5-318 IVB High Mound SA I 

63-5-319 IVB High Mound MA M 

63-5-320 IVB High Mound SA I 

63-5-321 IVB High Mound YA I 

63-5-323 IVB High Mound MA M 

65-31-727 IV Low Mound IN I 

65-31-728 IV Low Mound CH I 

65-31-729 IV Low Mound IN I 

65-31-730 IV Low Mound IN I 

65-31-732 IV Low Mound MA F 

65-31-733 IV Low Mound MA F 

65-31-734 IV Low Mound MA M 

65-31-735 IV Low Mound IN I 

65-31-736 IV Low Mound IN I 

65-31-737 V Low Mound MA M 

65-31-738 IVB High Mound IN I 

65-31-739 IV Low Mound CH I 

65-31-740 IV Low Mound YA M 

65-31-742 IV Low Mound YA F 

65-31-743 IV Low Mound OA F 

65-31-744 IV Low Mound MA M 

65-31-745 IV Low Mound YA M 

65-31-747 IV Low Mound YA M 

65-31-749 IV Low Mound MA M 
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Museum number Period Location Age Sex 

65-31-750 IV Low Mound CH I 

65-31-751 IV Low Mound OA M 

65-31-752 IV Low Mound YA M 

65-31-753 IV Low Mound OA M 

65-31-754 IV Low Mound OA M 

65-31-756 IV Low Mound MA M 

65-31-757 IVB High Mound SA M 

65-31-760 IV Low Mound CH I 

65-31-761 IV Low Mound CH I 

65-31-762 IV Low Mound SA I 

65-31-763 IVB High Mound YA M 

65-31-764 IV Low Mound YA M 

65-31-765 IV Low Mound IN I 

65-31-766 V Low Mound IN I 

65-31-767 IV Low Mound IN I 

65-31-768 IV Low Mound YA F 

65-31-771 IV Low Mound YA F 

65-31-769 IVB High Mound MA M 

65-31-770 IV Low Mound CH I 

65-31-772 IVB High Mound MA M 

65-31-773 IV Low Mound OA M 

65-31-774 IV Low Mound MA F 

65-31-775 V Low Mound YA F 

65-31-776 IV Low Mound OA M 

65-31-777 IVB High Mound MA M 

65-31-778 IV Low Mound CH I 

65-31-780 IV Low Mound IN I 

65-31-782 IV Low Mound IN I 

65-31-783 IV Low Mound CH I 

65-31-784 IV Low Mound IN I 

65-31-786 IV Low Mound CH I 

65-31-788 V Low Mound MA M 

65-31-789 V Low Mound MA M 

65-31-790 IV Low Mound MA F 

65-31-791 IV Low Mound OA F 

65-31-792 IV Low Mound YA M 

65-31-793 IVB High Mound OA M 

65-31-794 IV Low Mound SA I 

65-31-795 IV Low Mound MA F 

65-31-796 IV Low Mound MA F 

65-31-797 IVB High Mound OA I 

65-31-798 IVB High Mound MA I 

65-31-805 IV Low Mound OA M 
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Museum number Period Location Age Sex 

65-31-806 IV Low Mound YA F 

65-32-737 V Low Mound SA I 

65-32-740 IV Low Mound MA M 

65-32-765 IV Low Mound CH I 

65-32-792 IV Low Mound OA I 

65-32-805 IV Low Mound YA M 

71-23-500 IVB High Mound YA F 

71-23-503 IVB High Mound CH I 

71-23-504 IVB High Mound YA M 

71-23-505 IVB High Mound OA M 

71-23-509 IVB High Mound AD I 

71-23-510 IVB High Mound YA F 

71-23-511 IVB High Mound YA M 

71-23-513 IVB High Mound MA M 

71-23-514 IVB High Mound AD I 

71-23-515 IVB High Mound MA M 

71-23-516 IVB High Mound MA F 

71-23-517 IVB High Mound IN I 

71-23-518 IVB High Mound MA F 

71-23-520 IVB High Mound SA I 

71-23-521 IVB High Mound SA I 

71-23-522 IVB High Mound YA F 

71-23-523 IVB High Mound CH I 

71-23-524 IVB High Mound MA M 

71-23-525 IVB High Mound YA  M 

71-23-526 IVB High Mound MA F 

71-23-528 IVB High Mound CH I 

71-23-529 IVB High Mound MA F 

71-23-531 IVB High Mound OA I 

71-23-532 IVB High Mound CH I 

71-23-533 IVB High Mound AD I 

71-23-534 IVB High Mound SA I 

71-23-535 IVB High Mound YA M 

71-23-537 IVB High Mound AD M 

71-23-539 IVB High Mound MA I 

71-23-540 IVB High Mound MA I 

71-23-544 IVB High Mound CH I 

71-23-545 IVB High Mound YA M 

73-5-503 IVB High Mound MA M 

73-5-508 IVB High Mound CH I 

73-5-509 IVB High Mound IN I 

75-29-500 IVB High Mound YA F 

75-29-550 IVB High Mound SA I 
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Museum number Period Location Age Sex 

75-29-501 IVB High Mound YA M 

75-29-502 IVB High Mound CH I 

75-29-503 IVB High Mound YA I 

75-29-504 IVB High Mound OA M 

75-29-507 IVB High Mound AD M 

75-29-508 IVB High Mound YA M 

75-29-509 IVB High Mound YA M 

75-29-510 IVB High Mound YA M 

75-29-512 IVB High Mound SA I 

75-29-513 IVB High Mound CH I 

75-29-514 IVB High Mound SA F 

75-29-516 IVB High Mound SA F 

75-29-521 IVB High Mound MA M 

75-29-523 IVB High Mound CH I 

75-29-524 IVB High Mound IN I 

75-29-525 IVB High Mound AD I 

75-29-526 IVB High Mound MA M 

75-29-527 IVB High Mound MA F 

75-29-529 IVB High Mound SA M 

75-29-530 IVB High Mound AD I 

75-29-531 IVB High Mound MA I 

75-29-532 IVB High Mound CH I 

75-29-533 IVB High Mound SA I 

75-29-534 IVB High Mound OA M 

75-29-535 IVB High Mound AD I 

75-29-536 IVB High Mound YA M 

75-29-537 IVB High Mound AD I 

75-29-538 IVB High Mound AD I 

75-29-539 IVB High Mound AD I 

75-29-540 IVB High Mound SA M 

75-29-541 IVB High Mound AD I 

75-29-542 IVB High Mound MA M 

75-29-543 IVB High Mound MA M 

75-29-544 IVB High Mound YA I 

75-29-545 IVB High Mound SA I 

75-29-546 IVB High Mound SA I 

75-29-548 IVB High Mound IN I 

75-29-549 IVB High Mound AD I 

75-29-550 IVB High Mound SA I 

75-29-551 IVB High Mound YA I 

75-29-552 IVB High Mound OA I 

75-29-553 IVB High Mound MA M 

75-29-554 IVB High Mound MA M 
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Museum number Period Location Age Sex 

NMN-4 IVB High Mound FE I 

NMN-9 IVB High Mound AD I 

66-23-370 - Dinkha Tepe MA F 

66-23-371 - Dinkha Tepe OA F 

66-23-372 - Dinkha Tepe MA M 

66-23-373 - Dinkha Tepe MA I 

66-23-374 - Dinkha Tepe MA M 

66-23-375 - Dinkha Tepe MA F 

66-23-376 - Dinkha Tepe MA M 

66-23-377 - Dinkha Tepe YA F 

66-23-378 - Dinkha Tepe MA I 

66-23-379 - Dinkha Tepe CH I 

66-23-380 - Dinkha Tepe YA F 

66-23-381 - Dinkha Tepe YA F 

66-23-382 - Dinkha Tepe OA I 

66-23-383 - Dinkha Tepe MA F 

66-23-384 - Dinkha Tepe YA F 

66-23-385 - Dinkha Tepe YA M 

66-23-386 - Dinkha Tepe YA F 

66-23-387 - Dinkha Tepe MA F 

66-23-388 - Dinkha Tepe MA M 

66-23-389 - Dinkha Tepe MA M 

66-23-390 - Dinkha Tepe MA M 

66-23-391 - Dinkha Tepe SA I 

66-23-392 - Dinkha Tepe MA M 

66-23-393 - Dinkha Tepe MA M 

66-23-394 - Dinkha Tepe OA F 

66-23-395 - Dinkha Tepe MA M 

66-23-396 - Dinkha Tepe YA F 

66-23-397 - Dinkha Tepe OA F 

66-23-398 - Dinkha Tepe MA M 

66-23-399 - Dinkha Tepe OA M 

66-23-400 - Dinkha Tepe MA F 

66-23-401 - Dinkha Tepe MA M 

66-23-402 - Dinkha Tepe YA M 

66-23-403 - Dinkha Tepe OA F 

66-23-404 - Dinkha Tepe YA M 

66-23-405 - Dinkha Tepe MA M 

66-23-406 - Dinkha Tepe OA M 

66-23-407 - Dinkha Tepe OA F 

66-23-408 - Dinkha Tepe YA M 

66-23-409 - Dinkha Tepe MA M 

66-24-381 - Dinkha Tepe MA M 
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Museum number Period Location Age Sex 

66-24-382 - Dinkha Tepe OA I 

66-24-383 - Dinkha Tepe MA F 

69-33-2 - Dinkha Tepe OA F 

69-33-3 - Dinkha Tepe YA M 

69-33-4 - Dinkha Tepe MA F 

69-33-5 - Dinkha Tepe IN I 

69-33-6 - Dinkha Tepe CH I 

69-33-7 - Dinkha Tepe MA M 

69-33-8 - Dinkha Tepe OA M 

69-33-9 - Dinkha Tepe OA M 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



283 
 

 

 

 

 

 

 

 

APPENDIX C-B 

THE COMPARISON BETWEEN MORPHOLOGICAL SEX 

ESTIMATION ANALYSIS AND RV MEASUREMENTS 

ANALYSIS 
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Comparison between morphological sex estimation results and RV measurement sex 

estimation results – upper jaw.  

Museum 

Number 

Sex RV 

UI1 

RV 

UI2 

RV 

UC 

RV 

UP3 

RV 

UP4 

RV 

UM1 

RV 

UM2 

58-4-95 
M* - - F F F F F 

T - - F M F F F 

58-4-96 
M - - M M - M M 

T - - M M - M M 

58-4-100 
M F F F F F F F 

T F F F M F F F 

58-4-106 
M F - F F F F F 

T M - F F F F F 

58-4-107 
M - M - M M - M 

T - F - F F - F 

59-4-102 
M - - F F F F F 

T - - F F F F F 

59-4-107 
M - - F F F F F 

T - - F F F F F 

60-20-221 
M - - - - F - F 

T - - - - M - F 

60-20-222 
M F F - F F F - 

T F F - F F F - 

60-20-227 
M - - - - - - - 

T - - - - - - - 

60-20-233 
M M M M M M M M 

T M M M M M M M 

60-20-235 
M M M M M M M M 

T M M M M M M M 

63-5-308 
M M M M - - M M 

T M M M - - M M 

63-5-311 
M - - - M - M M 

T - - - M - M M 

65-31-389 
M - - - M - - - 

T - - - M - - - 

65-31-734 
M M M M M M M M 

T M M M M M M M 

65-31-745 
M M M M M M - M 

T M M M M M - M 

65-31-752 
M - - M M M M M 

T - - M M M F F 

65-31-753 
M M M M M - M - 

T M M M M - M - 

65-31-777 
M M M M M M - M 

T M M M M M - M 

65-31-789 
M - - - M - - - 

T - - - F - - - 

65-31-792 
M M M M M M M M 

T M M M M M M M 

65-31-805 
M - - - M M M - 

T - - - M F F - 

*Sex of the skeletons are based on conventional morphological analysis.  

S: sex estimation based on Skeletal analysis, T: sex estimation using Tooth measurements, 

M: males, F: females. 

Bold letters show the differences between the results of the two methods.  
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Comparison between morphological sex estimation results and RV measurement sex 

estimation results – upper jaw.  

 
Museum 

Number 

Sex RV 

UI1 

RV 

UI2 

RV 

UC 

RV 

UP3 

RV 

UP4 

RV 

UM1 

RV 

UM2 

66-23-370 
M - F F F F F F 

T - F F F F F F 

66-23-372 
M - - - - - - - 

T - - - - - - - 

66-23-374 
M - - F F - - - 

T - - F F - - - 

66-23-375 
M - F F F F F - 

T - F F F F M - 

66-23-377 
M F F - F F F - 

T F F - F F F  

66-23-380 
M - - F F F F F 

T - - F F F F F 

66-23-381 
T - - - - - - - 

M - - - - - - - 

66-23-387 
M F F F F F - - 

T F F F F F - - 

66-23-388 
M - - - - - - M 

T - - - - - - M 

66-23-390 
M - - - M - - - 

T - - - M - - - 

66-23-392 
M - - - M - - - 

T - - - M - - - 

66-23-393 
M M M M M M M - 

T M M M M M M - 

66-23-394 
M - - F F - - - 

T - - F F - - - 

66-23-395 
M M M M M M - M 

T M M M M M - M 

66-23-396 
M F F F F F F F 

T F F F F F F F 

66-23-400 
M - - F F F - - 

T - - F F F - - 

66-23-401 
M - M M M M M M 

T - M M M M M M 

66-23-402 
M M M M M M M M 

T M M M M M M M 

66-23-405 
M - - M M M M M 

T - - M M M M M 

66-23-406 
M - M M M M M M 

T - M M M M M M 

66-23-408 
M M M M M M M M 

T M M M M M M M 

66-23-409 
M - - - - - - - 

T - - - - - - - 

71-23-516 
M F F F F F - F 

T F F F F F - F 

75-29-500 
M - - F F F F F 

T - - F F F M F 

75-29-501 
M M M M M M M M 

T M M M M M M M 
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Comparison between morphological sex estimation results and RV measurement sex 

estimation results – upper jaw.  

Museum 

Number 
Sex RV 

UI1 
RV 

UI2 
RV 

UC 
RV 

UP3 
RV 

UP4 
RV 

UM1 
RV 

UM2 

75-29-542 
M M M M M - M M 

T M M M M - F F 

75-29-543 
M M M M M M M M 

T M M M M M M M 
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Comparison between morphological sex estimation results and RV measurement sex 

estimation results – lower jaw.  

Museum 

Number 
Sex RV 

LI1 
RV 

LI2 
RV 

LC 
RV 

LP3 
RV 

LP4 
RV 

LM1 
RV 

LM2 
RV 

LM3 

58-4-95 
M - - - - - - - - 

T - - - - - - - - 

58-4-96 
M M M M M M - M M 

T M M F F M - F F 

58-4-100 
M F F F F - F F - 

T F F F F - F F - 

58-4-106 
M F F F F F F F - 

T F F F F F F F - 

58-4-107 
M M M M M M M M - 

T M M M M F M F - 

59-4-102 
M F F F F F F F F 

T F F F F F F F F 

59-4-107 
M F F F F F F F F 

T F F F F F F F F 

60-20-221 
M - - F F F F F - 

T - - F F F F F - 

60-20-222 
M - F - F F F F - 

T - F - F F F F - 

60-20-227 
M - - F F - - - - 

T - - F F - - -  

60-20-233 
M M M M M M M M M 

T M M M M M M M M 

60-20-235 
M M M M M M M M - 

T M M M M F M F - 

63-5-308 
M - - - - - - - - 

T - - - - - - - - 

63-5-311 
M - - - M M M M M 

T - - - M M M M F 

65-31-389 
M - - - M - - - - 

T - - - M - - - - 

65-31-734 
M M M M M M M M M 

T M M M M M M M M 

65-31-745 
M M M M M M M M M 

T M M F M M M M M 

65-31-752 
M M M M M M M M M 

T M M M M M F M M 

65-31-753 
M M M M M M M M M 

T M M M M M M M M 

65-31-777 
M M M M M M - M - 

T M M M M M - M - 

65-31-789 
M - - - - - - M - 

T - - - - - - M - 

65-31-792 
M M M M M M M M - 

T M M M M M M M - 

65-31-805 
M - - - - M - - - 

T - - - - M - - - 

*Sex of the skeletons are based on conventional morphological analysis.  

S: sex estimation based on Skeletal analysis, T: sex estimation using Tooth measurements, 

M: males, F: females. 

Bold letters show the differences between the results of the two methods.  
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Comparison between morphological sex estimation results and RV measurement sex 

estimation results – lower jaw.  

Museum 

Number 
Sex RV 

LI1 
RV 

LI2 
RV 

LC 
RV 

LP3 
RV 

LP4 
RV 

LM1 
RV 

LM2 
RV 

LM3 

66-23-370 
M F - F F F F F F 

T M - F F F F F F 

66-23-372 
M - - M M M M M M 

T - - M M M M M M 

66-23-374 
M F F F F - - F F 

T F F F F - - F F 

66-23-375 
M F F F F F F F F 

T F F F F M F M F 

66-23-377 
M F F F F F - F - 

T M M F M F - M - 

66-23-380 
M - - - F F F F F 

T - - - F M F F M 

66-23-381 
T - - M M M M M M 

M - - M M M M M F 

66-23-387 
M - - - - - - - - 

T - - - - - - - - 

66-23-388 
M - - - - - - - - 

T - - - - - - - - 

66-23-390 
M - - - - - - - - 

T - - - - - - - - 

66-23-392 
M - - - - - - - - 

T - - - - - - - - 

66-23-393 
M M M M M M M M M 

T M M M M M M M M 

66-23-394 
M F F F F F - - F 

T F F F F F - - F 

66-23-395 
M - M M M M M M M 

T - M M M M M M M 

66-23-396 
M F F - F - F F - 

T F F - F - F F - 

66-23-400 
M F F F F F F F F 

T F F M M F F M F 

66-23-401 
M M M M M - M M M 

T M M F F - M M M 

66-23-402 
M M M - M M M M - 

T M M - M M M M - 

66-23-405 
M M M M M M M M M 

T M M M M M M M M 

66-23-406 
M M M - M M M M M 

T M M - M M M M M 

66-23-408 
M M M M M M M M - 

T M M M M M M M - 

66-23-409 
M M M M M M - M M 

T M M M M M - M M 

71-23-516 
M - - - - - - - - 

T - - - - - - - - 

75-29-500 
M - - - - - - - - 

T - - - - - - - - 

75-29-501 
M - - - - - - - - 

T - - - - - - - - 
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Comparison between morphological sex estimation results and RV measurement sex 

estimation results – lower jaw.  

Museum 

Number 

Sex RV 

LI1 

RV 

LI2 

RV 

LC 

RV 

LP3 

RV 

LP4 

RV 

LM1 

RV 

LM2 

RV 

LM3 

75-29-542 
M - - - - - - - - 

T - - - - - - - - 

75-29-543 
M - - - - - - - - 

T - - - - - - - - 
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APPENDIX D 

DENTAL METRIC STANDARDS FOR SEX ESTIMATION 
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     CT Scan                                                                        Tooth segmentation                                                       

        

   

 

 

 

 

Root segmentation          

 

                                                                                                Tooth 3D model 

 

 

  

 

 

 

 

 

 

   Cervical measurements                                                     Root volume measurements 

 

                                                                                    

Fig 1. Flow chart outlining the overall analysis process in this project.  
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Fig 2. Flow chart outlining the most sexually dimorphic measurements for sex estimation.   

 

 

 

 

 

 

 

 

 

Suggested measurements are: RV, cervical MD, 
& BL measurements of all available teeth. 

In case there are not many teeth available, the 
observer is advised to use the most sexually 
dimorphic measurements which are as follows: 

*RV measurements of incisors & canines

*Cervical MD & BL measurements of incisors & 
canines

*RV measurements of upper 2nd incisor

*RV measurements of upper canines

*MD measurements of lower 1st/2nd incisors

*MD measurements of lower canines

*RV measurements of upper 2nd molars

*BL measurements of lower 2nd molars
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Functions  

F 1  (UI1MD X 0.82) + (UI1BL X 2.33) + (-19.74)  

F 2 (LI1MD X 4.2) + (LI1BL X 0.99) + (-20.21) 

F 3 (UI2MD X 0.95) + (UI2BL X 1.99) + (-15.84) 

F 4 (LI2MD X 2.91) + (LI2BL X 1.54) + (-20.51) 

F 5 (UCMD X 1.88) + (UCBL X 0.95) + (-17.93) 

F 6 (LCMD X 1.69) + (LCBL X 0.86) + (-15.42) 

F 7 (UP3MD X 3.05) + (UP3BL X -0.04) + (-13.57)   

F 8 (LP3MD X 2.89) + (LP3BL X 0.45) + (-16.74) 

F 9 (UP4MD X 2.44) + (UP4BL X 0.46) + (-15.20) 

F 10 (LP4MD X 2.37) + (LP4BL X 0.56) + (-15.86) 

F 11 (UM1MD X 1.32) + (UM1BL X 1.32) + (-23.27) 

F 12 (LM1MD X 0.96) + (LM1BL X 1.29) + (-19.79) 

F 13 (UM2MD X 0.96) + (UM2BL X 1.05) + (-17.61) 

F 14 (LM2MD X 0.99) + (LM2BL X 1.15) + (-18.33) 

F 15  (LM3MD X 0.54) + (LM3BL X 1.69) + (-18.12) 

F 16  (UI1MD X 0.85) + (UI1BL X 2.40) + (-20.45) 

F17 (LI1MD X 7.71) + (LI1BL X -0.15) + (-26.30) 

F 18 (UI2MD X 2.76) + (UI2BL X 1.33) + (-20.15) 

F 19 (LI2MD X 1.68) + (LI2BL X 3.16) + (-24.62) 

F 20 (UCMD X 2.97) + (UCBL X 0.63) + (-20.94) 

F 21 (LCMD X 2.50) + (LCBL X 0.67) + (-17.80) 

F 22 (UP3MD X 3.25) + (UP3BL X 0.40) + (-18.02) 

F 23 (LP3MD X 2.51) + (LP3BL X 1.40) + (-21.06) 

F 24 (UP4MD X 2.73) + (UP4BL X 0.75) + (-18.41) 

F 25 (LP4MD X 2.72) + (LP4BL X 0.26) + (-15.30) 

F 26 (UM1MD X 3.16) + (UM1BL X 0.53) + (-29.68) 

F 27 (LM1MD X 1.14) + (LM1BL X 1.77) + (-25.21) 

F 28 (UM2MD X 0.77) + (UM2BL X 1.26) + (-28.46) 

F 29 (LM2MD X 1.33) + (LM2BL X 0.95) + (-29.57) 

F 30 (LI2MD X 2.25) + (LI2BL X 2.97) + (UI1BL X 1.75) + (-49.04) 

F 31 (UCMD X 1.90) + (UCBL X 0.85) + (-17.26) 

F 32 (UP3MD X 3.13) + ( -14.25)  

F 33 (UM2MD X 1.69) + (-12.61)  

F 34 (UM2MD X 1.20) + (UM1BL X 1.29) + (-22.00) 

F 35 (LI2MD X 3.98) + (LCBL X 2.14) + (UI1BL X 2.05) + (-44.29) 

F 36 (UCMD X 1.68) + (UP3MD X 1.81) + (-17.88) 

F 37 (UCMD X 2.60) + (-14.90) 

F 38 (UCMD X 2.82) + (-16.20) 

F 39 (LI1MD X 5.29) + (LI2MD X 3.36) + (-31.43) 

F 40 (LCMD X 2.50) + (UCMD X 1.80) + (-22.84) 

F 41 (UP3MD X 4.70) + (-21.70) 

F 42 (LP3MD X 3.37) + (-15.92) 

F 43 (UM1MD X 4.17) + (-32.90) 

F 44 (LM2MD X 2.10) + (-18.580 

F 45 (UP3MD x 2.81) + (UCMD x 2.21) + (-25.14) 
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Functions  

F 46 (UCMD X 2.80) + (LP3MD X 1.62) + (-22.88)  

F 47 (UCMD X 2.35) + ( UM1MD X 2.14) + (-30.24) 

F 48 (UCMD X 3.37) + (-18.23) 

F 49  (LI2 X 0.07) + (-9.34)  

F 50 (UC X 0.04) + (-8.50) 

F 51 (UP3 X 0.03) + (UP4 X 0.03) + (-9.19)  

F 52 (UP4 X 0.03) + (UP3 X 0.02) + (-8.15) 

F 53 (LP3 X 0.06) + (-9.27)  

F 54 (UM2 X 0.02) + (-7.41) 

F 55 (LM1 X 0.02) + (-10.00) 

F 56 (UC X 0.02) + (LI2 X 0.05) +(-11.53) 

F 57 (UC X 0.03) + (-7.54) 

F 58 (UC X 0.04) + (-9.82) 

F 59 (UC X 0.03) + (-6.61) 

F 60 (UC X 0.04) + (-9.04) 

F 61 (LI1RV X 0.09) + (MD X 7.47) + (BL X -3.61) + (-15.70) 

F 62 (LI2RV X 0.07) + (-9.09) 

F 63 (UCRV X 0.03) + (-6.41) 

F 64 (LCRV X 0.03) + (-6.25) 

F 65 (UP3RV X 0.03) + (MD X 1.43) + (-11.36) 

F 66 (LP3RV X 0.08) + (BL X -1.39) + (-2.78) 

F 67 (UP4RV X 0.04) + (BL X 0.91) + (-13.49) 

F 68 (LP4RV X 0.04) + (-6.86) 

F 69 (UM1RV X 0.02) + (-7.66) 

F 70 (LM1RV X 0.03) + (-10.79) 

F 71 (UM2RV X 0.02) + (-6.40) 

F 72 (LM2RV X 0.02) + (-7.30) 

F 73 (UI1MD X 2.06) + (-12.88) 

F 74 (LI1MD X 5.26) + (-18.45) 

F 75 (UI2MD X 2.47) + (-11.88) 

F 76 (LI2MD X 3.79) + (-14.71) 

F 77 (UCMD X 2.75) + (-15.38) 

F 78 (LCMD X -1.18) + (0.65) 

F 79 (UP3MD X 3.01) + (-13.74) 

F 80 (LP3MD X 3.42) + (-16.25) 

F 81 (UP4MD X 3.03) + (-14.23) 

F 82 (LP4MD X 2.93) + (-14.68) 

F 83 (UM1MD X 2.77) + (-21.36) 

F 84 (LM1MD X 2.07) + (-18.44) 

F 85 (UM2MD X 1.83) + (-13.78) 

F 86 (LM2MD X 1.76) + (-15.62) 

F 87 (LM3MD X 1.16) + (-10.12) 

F 88 (UI1BL X 2.86) + (-17.90) 

F 89 (LI1BL X 3.13) + (-17.27) 

F 90 (UI2BL X 2.62) + (-14.89) 

F 91 (LI2BL X 3.15) + (-18.88) 

F 92 (UCBL X 2.09) + (-16.36) 
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Functions  

F 93 (LCBL X 2.05) + (-15.28) 

F 94 (UP3BL X 1.84) + (-14.59) 

F 95 (LP3BL X 2.21) + (-14.74) 

F 96 (UP4BL X 1.67) + (-13.62) 

F 97 (LP4BL X 1.73) + (-12.36) 

F 98 (UM1BL X 2.07) + (-20.59) 

F 99 (LM1BL X 1.89) + (-16.49) 

F 100 (UM2BL X 1.67) + (-16.48) 

F 101 (LM2BL X 1.83) + (15.19) 

F 102 (LM3BL X 2.06) + (-16.40) 

F 103 (UI1MD3D X 2.18) + (-13.72) 

F 104 (LI1MD3D X 7.53) + (-26.46) 

F 105 (UI2MD3D X 3.35) + (-15.54) 

F 106 (LI2MD3D X 4.02) + (-15.35) 

F 107 (UCMD3D X 3.50) + (-19.04) 

F 108 (LCMD3D X 3.22) + (-16.70) 

F 109 (UP3MD3D X 3.58) + (-16.39) 

F 110 (LP3MD3D X 3.53) + (-16.72) 

F 111 (UP4MD3D X 3.83) + (-17.47) 

F 112 (LP4MD3D X 2.91) + (-14.36) 

F 113 (UM1MD3D X 3.67) + (-28.57) 

F 114 (LM1MD3D X 2.29) + (-20.18) 

F 115 (UM2MD3D X 1.87) + (-14.39) 

F 116 (LM2MD3D X 2.00) + (-17.75) 

F 117 (UI1BL3D X 2.96) + (-18.61) 

F 118 (LI1BL3D X 3.80) + (-20.37) 

F 119 (UI2BL3D X 3.41) + (-18.90) 

F 120 (LI2BL3D X 4.60) + (-26.47) 

F 121  (UCBL3D X 2.17) + (-16.34) 

F 122 (LCBL3D X 2.05) + (-14.70) 

F 123 (UP3BL3D X 1.90) + (-14.92) 

F 124 (LP3BL3D X 2.95) + (-19.41) 

F 125 (UP4BL3D X 1.78) + (-14.12) 

F 126 (LP4BL3D X 1.10) + (-14.17) 

F 127 (UM1BL3D X 2.05) + (-20.09) 

F 128 (LM1BL3D X 2.50) + (-21.46) 

F 129 (UM2BL3D X 1.77) + (-17.71) 

F 130 (LM2BL3D X 2.17) + (-17.82) 

F 131 (LM3BL3D X 2.49) + (-19.72) 

F 132 (UI1RV X 0.04) + (-8.04) 

F 133 (LI1RV X 0.09) + (-8.90) 

F 134 (UI2RV X 0.05) + (-7.76) 

F 135 (LI2RV X 0.07) + (-9.15) 

F 136 (UCRV X 0.03) + (-6.91) 

F 137 (LCRV X 0.03) + (-6.17) 

F 138 (UP3RV X 0.04) + (-6.40) 

F 139 (LP3RV X 0.06) + (-8.64) 
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Functions  

F 140 (UP4RV X 0.04) + (-7.30) 

F 141 (LP4RV X 0.04) + (-6.85) 

F 142 (UM1RV X 0.02) + (-7.78) 

F 143 (LM1RV X 0.02) + (-10.00) 

F 144 (UM2RV X 0.02) + (0.89) 

F 145 (LM2RV X 0.02) + (-6.91) 

F 146 (LM3RV X 0.02) + (-6.73) 
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