1 research outputs found

    Effects of initial-state dynamics on collective flow within a coupled transport and viscous hydrodynamic approach

    Full text link
    We evaluate the effects of preequilibrium dynamics on observables in ultrarelativistic heavy-ion collisions. We simulate the initial nonequilibrium phase within A MultiPhase Transport (AMPT) model, while the subsequent near-equilibrium evolution is modeled using (2+1)-dimensional relativistic viscous hydrodynamics. We match the two stages of evolution carefully by calculating the full energy-momentum tensor from AMPT and using it as input for the hydrodynamic evolution. We find that when the preequilibrium evolution is taken into account, final-state observables are insensitive to the switching time from AMPT to hydrodynamics. Unlike some earlier treatments of preequilibrium dynamics, we do not find the initial shear viscous tensor to be large. With a shear viscosity to entropy density ratio of 0.120.12, our model describes quantitatively a large set of experimental data on Pb+Pb collisions at the Large Hadron Collider(LHC) over a wide range of centrality: differential anisotropic flow vn(pT) (n=2−6)v_n(p_T) ~(n=2-6), event-plane correlations, correlation between v2v_2 and v3v_3, and cumulant ratio v2{4}/v2{2}v_2\{4\}/v_2\{2\}.Comment: 10 pages, v2: minor revisio
    corecore