5 research outputs found

    Applying Machine Learning to Identify Anti-Vaccination Tweets during the COVID-19 Pandemic

    No full text
    Anti-vaccination attitudes have been an issue since the development of the first vaccines. The increasing use of social media as a source of health information may contribute to vaccine hesitancy due to anti-vaccination content widely available on social media, including Twitter. Being able to identify anti-vaccination tweets could provide useful information for formulating strategies to reduce anti-vaccination sentiments among different groups. This study aims to evaluate the performance of different natural language processing models to identify anti-vaccination tweets that were published during the COVID-19 pandemic. We compared the performance of the bidirectional encoder representations from transformers (BERT) and the bidirectional long short-term memory networks with pre-trained GLoVe embeddings (Bi-LSTM) with classic machine learning methods including support vector machine (SVM) and naĆÆve Bayes (NB). The results show that performance on the test set of the BERT model was: accuracy = 91.6%, precision = 93.4%, recall = 97.6%, F1 score = 95.5%, and AUC = 84.7%. Bi-LSTM model performance showed: accuracy = 89.8%, precision = 44.0%, recall = 47.2%, F1 score = 45.5%, and AUC = 85.8%. SVM with linear kernel performed at: accuracy = 92.3%, Precision = 19.5%, Recall = 78.6%, F1 score = 31.2%, and AUC = 85.6%. Complement NB demonstrated: accuracy = 88.8%, precision = 23.0%, recall = 32.8%, F1 score = 27.1%, and AUC = 62.7%. In conclusion, the BERT models outperformed the Bi-LSTM, SVM, and NB models in this task. Moreover, the BERT model achieved excellent performance and can be used to identify anti-vaccination tweets in future studies

    Anti-vaccination attitude trends during the COVID-19 pandemic: A machine learning-based analysis of tweets

    No full text
    Objective: Vaccine hesitancy has been ranked by the World Health Organization among the top 10 threats to global health. With a surge in misinformation and conspiracy theories against vaccination observed during the COVID-19 pandemic, attitudes toward vaccination may be worsening. This study investigates trends in anti-vaccination attitudes during the COVID-19 pandemic and within the United States, Canada, the United Kingdom, and Australia. Methods: Vaccine-related English tweets published between 1 January 2020 and 27 June 2021 were used. A deep learning model using a dynamic word embedding method, Bidirectional Encoder Representations from Transformers (BERTs), was developed to identify anti-vaccination tweets. The classifier achieved a micro F1 score of 0.92. Time series plots and country maps were used to examine vaccination attitudes globally and within countries. Results: Among 9,352,509 tweets, 232,975 (2.49%) were identified as anti-vaccination tweets. The overall number of vaccine-related tweets increased sharply after the implementation of the first vaccination round since November 2020 (daily average of 6967 before vs. 31,757 tweets after 9/11/2020). The number of anti-vaccination tweets increased after conspiracy theories spread on social media. Percentages of anti-vaccination tweets were 3.45%, 2.74%, 2.46%, and 1.86% for the United States, the United Kingdom, Australia, and Canada, respectively. Conclusions: Strategies and information campaigns targeting vaccination misinformation may need to be specifically designed for regions with the highest anti-vaccination Twitter activity and when new vaccination campaigns are initiated

    Applying machine learning to identify antiā€vaccination tweets during the covidā€19 pandemic

    No full text
    Antiā€vaccination attitudes have been an issue since the development of the first vaccines. The increasing use of social media as a source of health information may contribute to vaccine hesitancy due to antiā€vaccination content widely available on social media, including Twitter. Being able to identify antiā€vaccination tweets could provide useful information for formulating strategies to reduce antiā€vaccination sentiments among different groups. This study aims to evaluate the performance of different natural language processing models to identify antiā€vaccination tweets that were published during the COVIDā€19 pandemic. We compared the performance of the bidirectional encoder representations from transformers (BERT) and the bidirectional long shortterm memory networks with preā€trained GLoVe embeddings (Biā€LSTM) with classic machine learning methods including support vector machine (SVM) and naĆÆve Bayes (NB). The results show that performance on the test set of the BERT model was: accuracy = 91.6%, precision = 93.4%, recall = 97.6%, F1 score = 95.5%, and AUC = 84.7%. Biā€LSTM model performance showed: accuracy = 89.8%, precision = 44.0%, recall = 47.2%, F1 score = 45.5%, and AUC = 85.8%. SVM with linear kernel performed at: accuracy = 92.3%, Precision = 19.5%, Recall = 78.6%, F1 score = 31.2%, and AUC = 85.6%. Complement NB demonstrated: accuracy = 88.8%, precision = 23.0%, recall = 32.8%, F1 score = 27.1%, and AUC = 62.7%. In conclusion, the BERT models outperformed the Biā€LSTM, SVM, and NB models in this task. Moreover, the BERT model achieved excellent performance and can be used to identify antiā€vaccination tweets in future studies
    corecore