69 research outputs found

    Relationship between subjective fall risk assessment and falls and fall-related fractures in frail elderly people

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Objective measurements can be used to identify people with risks of falls, but many frail elderly adults cannot complete physical performance tests. The study examined the relationship between a subjective risk rating of specific tasks (SRRST) to screen for fall risks and falls and fall-related fractures in frail elderly people.</p> <p>Methods</p> <p>The SRRST was investigated in 5,062 individuals aged 65 years or older who were utilized day-care services. The SRRST comprised 7 dichotomous questions to screen for fall risks during movements and behaviours such as walking, transferring, and wandering. The history of falls and fall-related fractures during the previous year was reported by participants or determined from an interview with the participant's family and care staff.</p> <p>Results</p> <p>All SRRST items showed significant differences between the participants with and without falls and fall-related fractures. In multiple logistic regression analysis adjusted for age, sex, diseases, and behavioural variables, the SRRST score was independently associated with history of falls and fractures. Odds ratios for those in the high-risk SRRST group (≥ 5 points) compared with the no risk SRRST group (0 point) were 6.15 (p < 0.01) for a single fall, 15.04 (p < 0.01) for recurrent falls, and 5.05 (p < 0.01) for fall-related fractures. The results remained essentially unchanged in subgroup analysis accounting for locomotion status.</p> <p>Conclusion</p> <p>These results suggest that subjective ratings by care staff can be utilized to determine the risks of falls and fall-related fractures in the frail elderly, however, these preliminary results require confirmation in further prospective research.</p

    Prevention of delirium (POD) for older people in hospital: study protocol for a randomised controlled feasibility trial

    Get PDF
    Background: Delirium is the most frequent complication among older people following hospitalisation. Delirium may be prevented in about one-third of patients using a multicomponent intervention. However, in the United Kingdom, the National Health Service has no routine delirium prevention care systems. We have developed the Prevention of Delirium Programme, a multicomponent delirium prevention intervention and implementation process. We have successfully carried out a pilot study to test the feasibility and acceptability of implementation of the programme. We are now undertaking preliminary testing of the programme. Methods/Design: The Prevention of Delirium Study is a multicentre, cluster randomised feasibility study designed to explore the potential effectiveness and cost-effectiveness of the Prevention of Delirium Programme. Sixteen elderly care medicine and orthopaedic/trauma wards in eight National Health Service acute hospitals will be randomised to receive the Prevention of Delirium Programme or usual care. Patients will be eligible for the trial if they have been admitted to a participating ward and are aged 65 years or over. The primary objectives of the study are to provide a preliminary estimate of the effectiveness of the Prevention of Delirium Programme as measured by the incidence of new onset delirium, assess the variability of the incidence of new-onset delirium, estimate the intracluster correlation coefficient and likely cluster size, assess barriers to the delivery of the Prevention of Delirium Programme system of care, assess compliance with the Prevention of Delirium Programme system of care, estimate recruitment and follow-up rates, assess the degree of contamination due to between-ward staff movements, and investigate differences in financial costs and benefits between the Prevention of Delirium Programme system of care and standard practice. Secondary objectives are to investigate differences in the number, severity and length of delirium episodes (including persistent delirium); length of stay in hospital; inhospital mortality; destination at discharge; health-related quality of life and health resource use; physical and social independence; anxiety and depression; and patient experience. Discussion: This feasibility study will be used to gather data to inform the design of a future definitive randomised controlled trial. Trial registration: ISRCTN01187372. Registered 13 March 2014

    In quest of a systematic framework for unifying and defining nanoscience

    Get PDF
    This article proposes a systematic framework for unifying and defining nanoscience based on historic first principles and step logic that led to a “central paradigm” (i.e., unifying framework) for traditional elemental/small-molecule chemistry. As such, a Nanomaterials classification roadmap is proposed, which divides all nanomatter into Category I: discrete, well-defined and Category II: statistical, undefined nanoparticles. We consider only Category I, well-defined nanoparticles which are >90% monodisperse as a function of Critical Nanoscale Design Parameters (CNDPs) defined according to: (a) size, (b) shape, (c) surface chemistry, (d) flexibility, and (e) elemental composition. Classified as either hard (H) (i.e., inorganic-based) or soft (S) (i.e., organic-based) categories, these nanoparticles were found to manifest pervasive atom mimicry features that included: (1) a dominance of zero-dimensional (0D) core–shell nanoarchitectures, (2) the ability to self-assemble or chemically bond as discrete, quantized nanounits, and (3) exhibited well-defined nanoscale valencies and stoichiometries reminiscent of atom-based elements. These discrete nanoparticle categories are referred to as hard or soft particle nanoelements. Many examples describing chemical bonding/assembly of these nanoelements have been reported in the literature. We refer to these hard:hard (H-n:H-n), soft:soft (S-n:S-n), or hard:soft (H-n:S-n) nanoelement combinations as nanocompounds. Due to their quantized features, many nanoelement and nanocompound categories are reported to exhibit well-defined nanoperiodic property patterns. These periodic property patterns are dependent on their quantized nanofeatures (CNDPs) and dramatically influence intrinsic physicochemical properties (i.e., melting points, reactivity/self-assembly, sterics, and nanoencapsulation), as well as important functional/performance properties (i.e., magnetic, photonic, electronic, and toxicologic properties). We propose this perspective as a modest first step toward more clearly defining synthetic nanochemistry as well as providing a systematic framework for unifying nanoscience. With further progress, one should anticipate the evolution of future nanoperiodic table(s) suitable for predicting important risk/benefit boundaries in the field of nanoscience

    Electrostatic self-assembly of macroscopic crystals using contact electrification

    No full text
    Self-assembly1,2,3,4 of components larger than molecules into ordered arrays is an efficient way of preparing microstructured materials with interesting mechanical5,6 and optical7,8 properties. Although crystallization of identical particles9,10 or particles of different sizes11 or shapes12 can be readily achieved, the repertoire of methods to assemble binary lattices of particles of the same sizes but with different properties is very limited13,14. This paper describes electrostatic self-assembly15,16,17 of two types of macroscopic components of identical dimensions using interactions that are generated by contact electrification18,19,20. The systems we have examined comprise two kinds of objects (usually spheres) made of different polymeric materials that charge with opposite electrical polarities when agitated on flat, metallic surfaces. The interplay of repulsive interactions between like-charged objects and attractive interactions between unlike-charged ones results in the self-assembly of these objects into highly ordered, closed arrays. Remarkably, some of the assemblies that form are not electroneutral???that is, they possess a net charge. We suggest that the stability of these unusual structures can be explained by accounting for the interactions between electric dipoles that the particles in the aggregates induce in their neighbours
    corecore