148 research outputs found

    Wavelength-Scale Imaging of Trapped Ions using a Phase Fresnel lens

    Full text link
    A microfabricated phase Fresnel lens was used to image ytterbium ions trapped in a radio frequency Paul trap. The ions were laser cooled close to the Doppler limit on the 369.5 nm transition, reducing the ion motion so that each ion formed a near point source. By detecting the ion fluorescence on the same transition, near diffraction limited imaging with spot sizes of below 440 nm (FWHM) was achieved. This is the first demonstration of imaging trapped ions with a resolution on the order of the transition wavelength.Comment: 8 pages, 3 figure

    Controllable optical phase shift over one radian from a single isolated atom

    Get PDF
    Fundamental optics such as lenses and prisms work by applying phase shifts to incoming light via the refractive index. In these macroscopic devices, many particles each contribute a miniscule phase shift, working together to impose a total phase shift of many radians. In principle, even a single isolated particle can apply a radian-level phase shift, but observing this phenomenon has proven challenging. We have used a single trapped atomic ion to induce and measure a large optical phase shift of 1.3±0.11.3 \pm 0.1 radians in light scattered by the atom. Spatial interferometry between the scattered light and unscattered illumination light enables us to isolate the phase shift in the scattered component. The phase shift achieves the maximum value allowed by atomic theory over the accessible range of laser frequencies, validating the microscopic model that underpins the macroscopic phenomenon of the refractive index. Single-atom phase shifts of this magnitude open up new quantum information protocols, including long-range quantum phase-shift-keying cryptography [1,2] and quantum nondemolition measurement [3,4].Comment: submitte

    Measurement of focusing properties for high numerical aperture optics using an automated submicron beamprofiler

    Full text link
    The focusing properties of three aspheric lenses with numerical aperture (NA) between 0.53 and 0.68 were directly measured using an interferometrically referenced scanning knife-edge beam profiler with sub-micron resolution. The results obtained for two of the three lenses tested were in agreement with paraxial gaussian beam theory. It was also found that the highest NA aspheric lens which was designed for 830nm was not diffraction limited at 633nm. This process was automated using motorized translation stages and provides a direct method for testing the design specifications of high numerical aperture optics.Comment: 6 pages 4 figure

    Quantum interface between an electrical circuit and a single atom

    Get PDF
    We show how to bridge the divide between atomic systems and electronic devices by engineering a coupling between the motion of a single ion and the quantized electric field of a resonant circuit. Our method can be used to couple the internal state of an ion to the quantized circuit with the same speed as the internal-state coupling between two ions. All the well-known quantum information protocols linking ion internal and motional states can be converted to protocols between circuit photons and ion internal states. Our results enable quantum interfaces between solid state qubits, atomic qubits, and light, and lay the groundwork for a direct quantum connection between electrical and atomic metrology standards.Comment: Supplemental material available on reques

    Absorption imaging of a single atom

    Full text link
    Absorption imaging has played a key role in the advancement of science from van Leeuwenhoek's discovery of red blood cells to modern observations of dust clouds in stellar nebulas and Bose-Einstein condensates. Here we show the first absorption imaging of a single atom isolated in vacuum. The optical properties of atoms are thoroughly understood, so a single atom is an ideal system for testing the limits of absorption imaging. A single atomic ion was confined in an RF Paul trap and the absorption imaged at near wavelength resolution with a phase Fresnel lens. The observed image contrast of 3.1(3)% is the maximum theoretically allowed for the imaging resolution of our setup. The absorption of photons by single atoms is of immediate interest for quantum information processing (QIP). Our results also point out new opportunities in imaging of light-sensitive samples both in the optical and x-ray regimes.Comment: Accepted to Nature Commu

    Laser cooling of new atomic and molecular species with ultrafast pulses

    Full text link
    We propose a new laser cooling method for atomic species whose level structure makes traditional laser cooling difficult. For instance, laser cooling of hydrogen requires single-frequency vacuum-ultraviolet light, while multielectron atoms need single-frequency light at many widely separated frequencies. These restrictions can be eased by laser cooling on two-photon transitions with ultrafast pulse trains. Laser cooling of hydrogen, antihydrogen, and many other species appears feasible, and extension of the technique to molecules may be possible.Comment: revision of quant-ph/0306099, submitted to PR

    Formation of Multipartite Entanglement Using Random Quantum Gates

    Full text link
    The formation of multipartite quantum entanglement by repeated operation of one and two qubit gates is examined. The resulting entanglement is evaluated using two measures: the average bipartite entanglement and the Groverian measure. A comparison is made between two geometries of the quantum register: a one dimensional chain in which two-qubit gates apply only locally between nearest neighbors and a non-local geometry in which such gates may apply between any pair of qubits. More specifically, we use a combination of random single qubit rotations and a fixed two-qubit gate such as the controlled-phase gate. It is found that in the non-local geometry the entanglement is generated at a higher rate. In both geometries, the Groverian measure converges to its asymptotic value more slowly than the average bipartite entanglement. These results are expected to have implications on different proposed geometries of future quantum computers with local and non-local interactions between the qubits.Comment: 7 pages, 5 figure

    Imaging of trapped ions with a microfabricated optic for quantum information processing

    Get PDF
    Trapped ions are a leading system for realizing quantum information processing (QIP). Most of the technologies required for implementing large-scale trapped-ion QIP have been demonstrated, with one key exception: a massively parallel ion-photon interconnect. Arrays of microfabricated phase Fresnel lenses (PFL) are a promising interconnect solution that is readily integrated with ion trap arrays for large-scale QIP. Here we show the first imaging of trapped ions with a microfabricated in-vacuum PFL, demonstrating performance suitable for scalable QIP. A single ion fluorescence collection efficiency of 4.2±1.5% was observed. The depth of focus for the imaging system was 19.4±2.4μm and the field of view was 140±20μm. Our approach also provides an integrated solution for high-efficiency optical coupling in neutral atom and solid-state QIP architectures
    • …
    corecore