25 research outputs found

    Riparian Rights Revisited: Legal Basis for Federal Instream Flow Rights

    Get PDF

    Gametocyte carriage in uncomplicated Plasmodium falciparum malaria following treatment with artemisinin combination therapy: a systematic review and meta-analysis of individual patient data

    Get PDF
    BACKGROUND: Gametocytes are responsible for transmission of malaria from human to mosquito. Artemisinin combination therapy (ACT) reduces post-treatment gametocyte carriage, dependent upon host, parasite and pharmacodynamic factors. The gametocytocidal properties of antimalarial drugs are important for malaria elimination efforts. An individual patient clinical data meta-analysis was undertaken to identify the determinants of gametocyte carriage and the comparative effects of four ACTs: artemether-lumefantrine (AL), artesunate/amodiaquine (AS-AQ), artesunate/mefloquine (AS-MQ), and dihydroartemisinin-piperaquine (DP). METHODS: Factors associated with gametocytaemia prior to, and following, ACT treatment were identified in multivariable logistic or Cox regression analysis with random effects. All relevant studies were identified through a systematic review of PubMed. Risk of bias was evaluated based on study design, methodology, and missing data. RESULTS: The systematic review identified 169 published and 9 unpublished studies, 126 of which were shared with the WorldWide Antimalarial Resistance Network (WWARN) and 121 trials including 48,840 patients were included in the analysis. Prevalence of gametocytaemia by microscopy at enrolment was 12.1 % (5887/48,589), and increased with decreasing age, decreasing asexual parasite density and decreasing haemoglobin concentration, and was higher in patients without fever at presentation. After ACT treatment, gametocytaemia appeared in 1.9 % (95 % CI, 1.7–2.1) of patients. The appearance of gametocytaemia was lowest after AS-MQ and AL and significantly higher after DP (adjusted hazard ratio (AHR), 2.03; 95 % CI, 1.24–3.12; P = 0.005 compared to AL) and AS-AQ fixed dose combination (FDC) (AHR, 4.01; 95 % CI, 2.40–6.72; P < 0.001 compared to AL). Among individuals who had gametocytaemia before treatment, gametocytaemia clearance was significantly faster with AS-MQ (AHR, 1.26; 95 % CI, 1.00–1.60; P = 0.054) and slower with DP (AHR, 0.74; 95 % CI, 0.63–0.88; P = 0.001) compared to AL. Both recrudescent (adjusted odds ratio (AOR), 9.05; 95 % CI, 3.74–21.90; P < 0.001) and new (AOR, 3.03; 95 % CI, 1.66–5.54; P < 0.001) infections with asexual-stage parasites were strongly associated with development of gametocytaemia after day 7. CONCLUSIONS: AS-MQ and AL are more effective than DP and AS-AQ FDC in preventing gametocytaemia shortly after treatment, suggesting that the non-artemisinin partner drug or the timing of artemisinin dosing are important determinants of post-treatment gametocyte dynamics

    Selection of Plasmodium falciparum pfcrt and pfmdr1 polymorphisms after treatment with artesunate-amodiaquine fixed dose combination or artemether-lumefantrine in Liberia

    No full text
    Plasmodium falciparum uncomplicated malaria can successfully be treated with an artemisinin-based combination therapy (ACT). However resistance is spreading to the different ACT compounds; the artemisinin derivative and the partner drug. Studies of P. falciparum polymorphisms associated with drug resistance can provide a useful tool to track resistance and guide treatment policy as well as an in-depth understanding of the development and spread of resistance.The role of P. falciparum molecular markers in selection of reinfections was assessed in an efficacy trial comparing artesunate-amodiaquine fixed-dose combination with artemether-lumefantrine to treat malaria in Nimba County, Liberia 2008-2009. P. falciparum polymorphisms in pfcrt 76, pfmdr1 86, 184 and 1246, and pfmrp1 876 and 1466 were analysed by PCR-RFLP and pyrosequencing.High baseline prevalence of pfmdr1 1246Y was found in Nimba county (38 %). Pfmdr1 1246Y and pfmdr1 86+184+1246 haplotypes NYY and YYY were selected in reinfections in the artesunate-amodiaquine arm and pfcrt K76, pfmdr1 N86 and pfmdr1 haplotype NFD were selected in artemether-lumefantrine reinfections. Parasites harbouring pfmdr1 1246Y could reinfect earlier after treatment with artesunate-amodiaquine and parasites carrying pfmdr1 N86 could reinfect at higher lumefantrine concentrations in patients treated with artemether-lumefantrine.Although treatment is highly efficacious, selection of molecular markers in reinfections could indicate a decreased sensitivity or tolerance of parasites to the current treatments and the baseline prevalence of molecular markers should be closely monitored. Since individual drug levels and the day of reinfection were demonstrated to be key determinants for selection of reinfections, this data needs to be collected and taken into account for accurate evaluation of molecular markers for anti-malarial treatments. The protocols for the clinical trial was registered with Current Controlled Trials, under the Identifier Number ISRCTN51688713 on 9 October 2008

    Selection of Plasmodium falciparum pfcrt and pfmdr1 polymorphisms after treatment with artesunate-amodiaquine fixed dose combination or artemether-lumefantrine in Liberia

    Get PDF
    Plasmodium falciparum uncomplicated malaria can successfully be treated with an artemisinin-based combination therapy (ACT). However resistance is spreading to the different ACT compounds; the artemisinin derivative and the partner drug. Studies of P. falciparum polymorphisms associated with drug resistance can provide a useful tool to track resistance and guide treatment policy as well as an in-depth understanding of the development and spread of resistance.The role of P. falciparum molecular markers in selection of reinfections was assessed in an efficacy trial comparing artesunate-amodiaquine fixed-dose combination with artemether-lumefantrine to treat malaria in Nimba County, Liberia 2008-2009. P. falciparum polymorphisms in pfcrt 76, pfmdr1 86, 184 and 1246, and pfmrp1 876 and 1466 were analysed by PCR-RFLP and pyrosequencing.High baseline prevalence of pfmdr1 1246Y was found in Nimba county (38 %). Pfmdr1 1246Y and pfmdr1 86+184+1246 haplotypes NYY and YYY were selected in reinfections in the artesunate-amodiaquine arm and pfcrt K76, pfmdr1 N86 and pfmdr1 haplotype NFD were selected in artemether-lumefantrine reinfections. Parasites harbouring pfmdr1 1246Y could reinfect earlier after treatment with artesunate-amodiaquine and parasites carrying pfmdr1 N86 could reinfect at higher lumefantrine concentrations in patients treated with artemether-lumefantrine.Although treatment is highly efficacious, selection of molecular markers in reinfections could indicate a decreased sensitivity or tolerance of parasites to the current treatments and the baseline prevalence of molecular markers should be closely monitored. Since individual drug levels and the day of reinfection were demonstrated to be key determinants for selection of reinfections, this data needs to be collected and taken into account for accurate evaluation of molecular markers for anti-malarial treatments. The protocols for the clinical trial was registered with Current Controlled Trials, under the Identifier Number ISRCTN51688713 on 9 October 2008

    Do synergies exist in related acquisitions? - A meta-analysis of acquisition studies

    Full text link
    Mergers and Acquisitions (M&A) aim to increase wealth for shareholders of the acquiring company, in particular by creating synergies. It is often assumed that relatedness is a source of synergies. Our study distinguishes between business, cultural, technological and size relatedness. It discusses the reasons why these different forms of relatedness can lead to an acquisition success and conducts a meta-analysis of 67 prior M&A studies. Results indicate that positive effects can be expected under specific conditions only and have a limited overall impact on acquisition success. A moderator analysis finds that synergies stemming from relatedness depend on industry-, country-, and investor-characteristics

    The risk of Plasmodium vivax parasitaemia after P. falciparum malaria: An individual patient data meta-analysis from the WorldWide Antimalarial Resistance Network

    No full text
    Background There is a high risk of Plasmodium vivax parasitaemia following treatment of falciparum malaria. Our study aimed to quantify this risk and the associated determinants using an individual patient data meta-analysis in order to identify populations in which a policy of universal radical cure, combining artemisinin-based combination therapy (ACT) with a hypnozoitocidal antimalarial drug, would be beneficial. Methods and findings A systematic review of Medline, Embase, Web of Science, and the Cochrane Database of Systematic Reviews identified efficacy studies of uncomplicated falciparum malaria treated with ACT that were undertaken in regions coendemic for P. vivax between 1 January 1960 and 5 January 2018. Data from eligible studies were pooled using standardised methodology. The risk of P. vivax parasitaemia at days 42 and 63 and associated risk factors were investigated by multivariable Cox regression analyses. Study quality was assessed using a tool developed by the Joanna Briggs Institute. The study was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42018097400). In total, 42 studies enrolling 15,341 patients were included in the analysis, including 30 randomised controlled trials and 12 cohort studies. Overall, 14,146 (92.2%) patients had P. falciparum monoinfection and 1,195 (7.8%) mixed infection with P. falciparum and P. vivax. The median age was 17.0 years (interquartile range [IQR] = 9.0–29.0 years; range = 0–80 years), with 1,584 (10.3%) patients younger than 5 years. 2,711 (17.7%) patients were treated with artemether-lumefantrine (AL, 13 studies), 651 (4.2%) with artesunate-amodiaquine (AA, 6 studies), 7,340 (47.8%) with artesunate-mefloquine (AM, 25 studies), and 4,639 (30.2%) with dihydroartemisinin-piperaquine (DP, 16 studies). 14,537 patients (94.8%) were enrolled from the Asia-Pacific region, 684 (4.5%) from the Americas, and 120 (0.8%) from Africa. At day 42, the cumulative risk of vivax parasitaemia following treatment of P. falciparum was 31.1% (95% CI 28.9–33.4) after AL, 14.1% (95% CI 10.8–18.3) after AA, 7.4% (95% CI 6.7–8.1) after AM, and 4.5% (95% CI 3.9–5.3) after DP. By day 63, the risks had risen to 39.9% (95% CI 36.6–43.3), 42.4% (95% CI 34.7–51.2), 22.8% (95% CI 21.2–24.4), and 12.8% (95% CI 11.4–14.5), respectively. In multivariable analyses, the highest rate of P. vivax parasitaemia over 42 days of follow-up was in patients residing in areas of short relapse periodicity (adjusted hazard ratio [AHR] = 6.2, 95% CI 2.0–19.5; p = 0.002); patients treated with AL (AHR = 6.2, 95% CI 4.6–8.5; p < 0.001), AA (AHR = 2.3, 95% CI 1.4–3.7; p = 0.001), or AM (AHR = 1.4, 95% CI 1.0–1.9; p = 0.028) compared with DP; and patients who did not clear their initial parasitaemia within 2 days (AHR = 1.8, 95% CI 1.4–2.3; p < 0.001). The analysis was limited by heterogeneity between study populations and lack of data from very low transmission settings. Study quality was high. Conclusions In this meta-analysis, we found a high risk of P. vivax parasitaemia after treatment of P. falciparum malaria that varied significantly between studies. These P. vivax infections are likely attributable to relapses that could be prevented with radical cure including a hypnozoitocidal agent; however, the benefits of such a novel strategy will vary considerably betwee
    corecore