78 research outputs found

    Reading-out the state of a flux qubit by Josephson transmission line solitons

    Full text link
    We describe the read-out process of the state of a Josephson flux qubit via solitons in Josephson transmission lines (JTL) as they are in use in the standard rapid single flux quantum (RSFQ) technology. We consider the situation where the information about the state of the qubit is stored in the time delay of the soliton. We analyze dissipative underdamped JTLs, take into account their jitter, and provide estimates of the measuring time and efficiency of the measurement for relevant experimental parameters.Comment: 13 pages, 12 figure

    Design of a ballistic fluxon qubit readout

    No full text
    A detailed design is given for a flux qubit readout using ballistic fluxons. In this scheme, fluxons propagate through an underdamped Josephson transmission line (JTL) coupled to the qubit, whose state affects the fluxon propagation time. For strong qubit–JTL coupling, and far from the symmetry point, a qubit can be measured with fidelity greater than 99% and measurement time of 4 ns. The readout circuit requires additional rapid single flux quantum (RSFQ) interface circuitry to launch and receive the delayed flux solitons. The parameters of this driver and receiver have been optimized to produce low fluxon speed at launch and impedance matching at the receiver. The delayed solitons are compared to a reference line using a detector with time resolution of better than 16 ps. Both the JTL and RSFQ interface were designed for the Nb 30 A cm^-2 process developed at VTT, Finland, with postdeposition of the Al qubit at IPHT, German

    RSFQ baseband digital signal processing

    No full text
    Ultra fast switching speed of superconductingdigital circuits enable realization of Digital Signal Processors with performance unattainable by any other technology. Based on Rapid-Single-Flux technology (RSFQ) logic, these integrated circuits are capable of delivering high computation capacity up to 30 GOPS on a single processor and very short latency of 0.1 ns. There are two main applications of such hardware for practical telecommunication systems: Filters for superconducting ADCsoperating with digital RF data and recursive Filters at baseband. The later of these allows functions such as multiuser detection for 3G WCDMA, equalization and channel precoding for 4G OFDM MIMO, and general blind detection. The performance gain is an increase in the cell capacity, quality of service, and transmitted data rate. The current status of the development of the RSFQ baseband DSP is discussed. Major components with operating speed of 30 GHz have been developed. Designs, test results, and future development of the complete system

    RSFQ baseband digital signal processing

    No full text
    Ultra fast switching speed of superconductingdigital circuits enable realization of Digital Signal Processors with performance unattainable by any other technology. Based on Rapid-Single-Flux technology (RSFQ) logic, these integrated circuits are capable of delivering high computation capacity up to 30 GOPS on a single processor and very short latency of 0.1 ns. There are two main applications of such hardware for practical telecommunication systems: Filters for superconducting ADCsoperating with digital RF data and recursive Filters at baseband. The later of these allows functions such as multiuser detection for 3G WCDMA, equalization and channel precoding for 4G OFDM MIMO, and general blind detection. The performance gain is an increase in the cell capacity, quality of service, and transmitted data rate. The current status of the development of the RSFQ baseband DSP is discussed. Major components with operating speed of 30 GHz have been developed. Designs, test results, and future development of the complete system

    Design of a ballistic fluxon qubit readout

    No full text
    A detailed design is given for a flux qubit readout using ballistic fluxons. In this scheme, fluxons propagate through an underdamped Josephson transmission line (JTL) coupled to the qubit, whose state affects the fluxon propagation time. For strong qubit–JTL coupling, and far from the symmetry point, a qubit can be measured with fidelity greater than 99% and measurement time of 4 ns. The readout circuit requires additional rapid single flux quantum (RSFQ) interface circuitry to launch and receive the delayed flux solitons. The parameters of this driver and receiver have been optimized to produce low fluxon speed at launch and impedance matching at the receiver. The delayed solitons are compared to a reference line using a detector with time resolution of better than 16 ps. Both the JTL and RSFQ interface were designed for the Nb 30 A cm^-2 process developed at VTT, Finland, with postdeposition of the Al qubit at IPHT, German
    • …
    corecore