498 research outputs found
Ruling Out Chaos in Compact Binary Systems
We investigate the orbits of compact binary systems during the final inspiral
period before coalescence by integrating numerically the second-order
post-Newtonian equations of motion. We include spin-orbit and spin-spin
coupling terms, which, according to a recent study by Levin [J. Levin, Phys.
Rev. Lett. 84, 3515 (2000)], may cause the orbits to become chaotic. To examine
this claim, we study the divergence of initially nearby phase-space
trajectories and attempt to measure the Lyapunov exponent gamma. Even for
systems with maximally spinning objects and large spin-orbit misalignment
angles, we find no chaotic behavior. For all the systems we consider, we can
place a strict lower limit on the divergence time t_L=1/gamma that is many
times greater than the typical inspiral time, suggesting that chaos should not
adversely affect the detection of inspiral events by upcoming
gravitational-wave detectors.Comment: 8 pages, 4 figures, submitted to Phys. Rev. Let
Non-precessional spin-orbit effects on gravitational waves from inspiraling compact binaries to second post-Newtonian order
We derive all second post-Newtonian (2PN), non-precessional effects of spin-
orbit coupling on the gravitational wave forms emitted by an inspiraling binary
composed of spinning, compact bodies in a quasicircular orbit. Previous post-
Newtonian calculations of spin-orbit effects (at 1.5PN order) relied on a fluid
description of the spinning bodies. We simplify the calculations by introducing
into post-Newtonian theory a delta-function description of the influence of the
spins on the bodies' energy-momentum tensor. This description was recently used
by Mino, Shibata, and Tanaka (MST) in Teukolsky-formalism analyses of particles
orbiting massive black holes, and is based on prior work by Dixon. We compute
the 2PN contributions to the wave forms by combining the MST energy-momentum
tensor with the formalism of Blanchet, Damour, and Iyer for evaluating the
binary's radiative multipoles, and with the well-known 1.5PN order equations of
motion for the binary. Our results contribute at 2PN order only to the
amplitudes of the wave forms. The secular evolution of the wave forms' phase,
the quantity most accurately measurable by LIGO, is not affected by our results
until 2.5PN order, at which point other spin-orbit effects also come into play.
We plan to evaluate the entire 2.5PN spin-orbit contribution to the secular
phase evolution in a future paper, using the techniques of this paper.Comment: 11 pages, submitted to Phys. Rev.
On Estimation of the Post-Newtonian Parameters in the Gravitational-Wave Emission of a Coalescing Binary
The effect of the recently obtained 2nd post-Newtonian corrections on the
accuracy of estimation of parameters of the gravitational-wave signal from a
coalescing binary is investigated. It is shown that addition of this correction
degrades considerably the accuracy of determination of individual masses of the
members of the binary. However the chirp mass and the time parameter in the
signal is still determined to a very good accuracy. The possibility of
estimation of effects of other theories of gravity is investigated. The
performance of the Newtonian filter is investigated and it is compared with
performance of post-Newtonian search templates introduced recently. It is shown
that both search templates can extract accurately useful information about the
binary.Comment: 34 pages, 118Kb, LATEX format, submitted to Phys. Rev.
Coalescence of Two Spinning Black Holes: An Effective One-Body Approach
We generalize to the case of spinning black holes a recently introduced
``effective one-body'' approach to the general relativistic dynamics of binary
systems. The combination of the effective one-body approach, and of a Pad\'e
definition of some crucial effective radial functions, is shown to define a
dynamics with much improved post-Newtonian convergence properties, even for
black hole separations of the order of . We discuss the approximate
existence of a two-parameter family of ``spherical orbits'' (with constant
radius), and, of a corresponding one-parameter family of ``last stable
spherical orbits'' (LSSO). These orbits are of special interest for forthcoming
LIGO/VIRGO/GEO gravitational wave observations. It is argued that for most (but
not all) of the parameter space of two spinning holes the effective one-body
approach gives a reliable analytical tool for describing the dynamics of the
last orbits before coalescence. This tool predicts, in a quantitative way, how
certain spin orientations increase the binding energy of the LSSO. This leads
to a detection bias, in LIGO/VIRGO/GEO observations, favouring spinning black
hole systems, and makes it urgent to complete the conservative effective
one-body dynamics given here by adding (resummed) radiation reaction effects,
and by constructing gravitational waveform templates that include spin effects.
Finally, our approach predicts that the spin of the final hole formed by the
coalescence of two arbitrarily spinning holes never approaches extremality.Comment: 26 pages, two eps figures, accepted in Phys. Rev. D, minor updating
of the text, clarifications added and inclusion of a few new reference
Spin-spin effects in radiating compact binaries
The dynamics of a binary system with two spinning components on an eccentric
orbit is studied, with the inclusion of the spin-spin interaction terms
appearing at the second post-Newtonian order. A generalized true anomaly
parametrization properly describes the radial component of the motion. The
average over one radial period of the magnitude of the orbital angular momentum
is found to have no nonradiative secular change. All spin-spin terms
in the secular radiative loss of the energy and magnitude of orbital angular
momentum are given in terms of and other constants of the motion.
Among them, self-interaction spin effects are found, representing the second
post-Newtonian correction to the 3/2 post-Newtonian order Lense-Thirring
approximation.Comment: 12 pages, to appear in Phys. Rev.
Measuring gravitational waves from binary black hole coalescences: II. the waves' information and its extraction, with and without templates
We discuss the extraction of information from detected binary black hole
(BBH) coalescence gravitational waves, focusing on the merger phase that occurs
after the gradual inspiral and before the ringdown. Our results are: (1) If
numerical relativity simulations have not produced template merger waveforms
before BBH detections by LIGO/VIRGO, one can band-pass filter the merger waves.
For BBHs smaller than about 40 solar masses detected via their inspiral waves,
the band pass filtering signal to noise ratio indicates that the merger waves
should typically be just barely visible in the noise for initial and advanced
LIGO interferometers. (2) We derive an optimized (maximum likelihood) method
for extracting a best-fit merger waveform from the noisy detector output; one
"perpendicularly projects" this output onto a function space (specified using
wavelets) that incorporates our prior knowledge of the waveforms. An extension
of the method allows one to extract the BBH's two independent waveforms from
outputs of several interferometers. (3) If numerical relativists produce codes
for generating merger templates but running the codes is too expensive to allow
an extensive survey of the merger parameter space, then a coarse survey of this
parameter space, to determine the ranges of the several key parameters and to
explore several qualitative issues which we describe, would be useful for data
analysis purposes. (4) A complete set of templates could be used to test the
nonlinear dynamics of general relativity and to measure some of the binary
parameters. We estimate the number of bits of information obtainable from the
merger waves (about 10 to 60 for LIGO/VIRGO, up to 200 for LISA), estimate the
information loss due to template numerical errors or sparseness in the template
grid, and infer approximate requirements on template accuracy and spacing.Comment: 33 pages, Rextex 3.1 macros, no figures, submitted to Phys Rev
Gravitational Waves from Mergin Compact Binaries: How Accurately Can One Extract the Binary's Parameters from the Inspiral Waveform?
The most promising source of gravitational waves for the planned detectors
LIGO and VIRGO are merging compact binaries, i.e., neutron star/neutron star
(NS/NS), neutron star/black hole (NS/BH), and black hole/black-hole (BH/BH)
binaries. We investigate how accurately the distance to the source and the
masses and spins of the two bodies will be measured from the gravitational wave
signals by the three detector LIGO/VIRGO network using ``advanced detectors''
(those present a few years after initial operation). The combination of the masses of the two bodies is
measurable with an accuracy . The reduced mass is measurable
to for NS/NS and NS/BH binaries, and for BH/BH
binaries (assuming BH's). Measurements of the masses and spins are
strongly correlated; there is a combination of and the spin angular
momenta that is measured to within . We also estimate that distance
measurement accuracies will be for of the detected
signals, and for of the signals, for the LIGO/VIRGO
3-detector network.Comment: 103 pages, 20 figures, submitted to Phys Rev D, uses revtex macros,
Caltech preprint GRP-36
Innermost circular orbit of binary black holes at the third post-Newtonian approximation
The equations of motion of two point masses have recently been derived at the
3PN approximation of general relativity. From that work we determine the
location of the innermost circular orbit or ICO, defined by the minimum of the
binary's 3PN energy as a function of the orbital frequency for circular orbits.
We find that the post-Newtonian series converges well for equal masses. Spin
effects appropriate to corotational black-hole binaries are included. We
compare the result with a recent numerical calculation of the ICO in the case
of two black holes moving on exactly circular orbits (helical symmetry). The
agreement is remarkably good, indicating that the 3PN approximation is adequate
to locate the ICO of two black holes with comparable masses. This conclusion is
reached with the post-Newtonian expansion expressed in the standard Taylor
form, without using resummation techniques such as Pad\'e approximants and/or
effective-one-body methods.Comment: 21 pages, to appear in Phys. Rev. D (spin effects appropriate to
corotational black-hole binaries are included; discussion on the validity of
the approximation is added
Performance of Newtonian filters in detecting gravitational waves from coalescing binaries
Coalescing binary systems are one of the most promising sources of
gravitational waves. The technique of matched filtering used in the detection
of gravitational waves from coalescing binaries relies on the construction of
accurate templates. Until recently filters modelled on the quadrupole or the
Newtonian approximation were deemed sufficient. Recently it was shown that
post-Newtonian effects contribute to a secular growth in the phase difference
between the actual signal and its corresponding Newtonian template. In this
paper we investigate the possibility of compensating for the phase difference
caused by the post-Newtonian terms by allowing for a shift in the Newtonian
filter parameters. We find that Newtonian filters perform adequately for the
purpose of detecting the presence of the signal for both the initial and the
advanced LIGO detectors.Comment: Revtex 9 pages + 6 figures ( Can be obtained by "anonymous" ftp from
144.16.31.1 in dir /pub/rbs. Submitted to Physical Review D. IUCAA 1
Gravitational radiation from compact binary systems: gravitational waveforms and energy loss to second post-Newtonian order
We derive the gravitational waveform and gravitational-wave energy flux
generated by a binary star system of compact objects (neutron stars or black
holes), accurate through second post-Newtonian order () beyond the lowest-order quadrupole approximation. We cast the
Einstein equations into the form of a flat-spacetime wave equation together
with a harmonic gauge condition, and solve it formally as a retarded integral
over the past null cone of the chosen field point. The part of this integral
that involves the matter sources and the near-zone gravitational field is
evaluated in terms of multipole moments using standard techniques; the
remainder of the retarded integral, extending over the radiation zone, is
evaluated in a novel way. The result is a manifestly convergent and finite
procedure for calculating gravitational radiation to arbitrary orders in a
post-Newtonian expansion. Through second post-Newtonian order, the radiation is
also shown to propagate toward the observer along true null rays of the
asymptotically Schwarzschild spacetime, despite having been derived using flat
spacetime wave equations. The method cures defects that plagued previous
``brute- force'' slow-motion approaches to the generation of gravitational
radiation, and yields results that agree perfectly with those recently obtained
by a mixed post-Minkowskian post-Newtonian method. We display explicit formulae
for the gravitational waveform and the energy flux for two-body systems, both
in arbitrary orbits and in circular orbits. In an appendix, we extend the
formalism to bodies with finite spatial extent, and derive the spin corrections
to the waveform and energy loss.Comment: 59 pages ReVTeX; Physical Review D, in press; figures available on
request to [email protected]
- âŠ