47 research outputs found

    Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure.

    Get PDF
    The wettability of graphene is both fundamental and crucial for interfacing in most applications, but a detailed understanding of its time evolution remains elusive. Here we systematically investigate the wettability of metal-supported, chemical vapor deposited graphene films as a function of ambient air exposure time using water and various other test liquids with widely different surface tensions. The wettability of graphene is not constant, but varies with substrate interactions and air exposure time. The substrate interactions affect the initial graphene wettability, where, for instance, water contact angles of ∼85 and ∼61° were measured for Ni and Cu supported graphene, respectively, after just minutes of air exposure. Analysis of the surface free energy components indicates that the substrate interactions strongly influence the Lewis acid-base component of supported graphene, which is considerably weaker for Ni supported graphene than for Cu supported graphene, suggesting that the classical van der Waals interaction theory alone is insufficient to describe the wettability of graphene. For prolonged air exposure, the effect of physisorption of airborne contaminants becomes increasingly dominant, resulting in an increase of water contact angle that follows a universal linear-logarithmic relationship with exposure time, until saturating at a maximum value of 92-98°. The adsorbed contaminants render all supported graphene samples increasingly nonpolar, although their total surface free energy decreases only by 10-16% to about 37-41 mJ/m2. Our finding shows that failure to account for the air exposure time may lead to widely different wettability values and contradicting arguments about the wetting transparency of graphene.We acknowledge funding from EPSRC (Grant No. EP/K016636/1, GRAPHTED) and ERC (Grant No. 279342, InsituNANO). P.R. Kidambi acknowledges the Lindemann Trust Fellowship. R.S. Weatherup acknowledges a Research Fellowship from St. John’s College, Cambridge and a EU Marie Skłodowska-Curie Individual Fellowship under grant ARTIST (no. 656870) from the European Union’s Horizon 2020 research and innovation programme.This is the final version of the article. It first appeared from the American Chemical Society via https://doi.org/10.1021/acs.jpcc.5b1049

    Optical scattering from graphene foam for oil imaging/sensing

    Get PDF
    This work studied a new way of sensing oil leaks using graphene foam through an optical imaging and light scattering method.</p

    A Scalable Route to Nanoporous Large-Area Atomically Thin Graphene Membranes by Roll-to-Roll Chemical Vapor Deposition and Polymer Support Casting

    Get PDF
    Scalable, cost-effective synthesis and integration of graphene is imperative to realize large-area applications such as nanoporous atomically thin membranes (NATMs). Here, we report a scalable route to the production of NATMs via high-speed, continuous synthesis of large-area graphene by roll-to-roll chemical vapor deposition (CVD), combined with casting of a hierarchically porous polymer support. To begin, we designed and built a two zone roll-to-roll graphene CVD reactor, which sequentially exposes the moving foil substrate to annealing and growth atmospheres, with a sharp, isothermal transition between the zones. The configurational flexibility of the reactor design allows for a detailed evaluation of key parameters affecting graphene quality and trade-offs to be considered for high-rate roll-to-roll graphene manufacturing. With this system, we achieve synthesis of uniform high-quality monolayer graphene (I_D/I_G < 0.065) at speeds ≥5 cm/min. NATMs fabricated from the optimized graphene, via polymer casting and postprocessing, show size-selective molecular transport with performance comparable to that of membranes made from conventionally synthesized graphene. Therefore, this work establishes the feasibility of a scalable manufacturing process of NATMs, for applications including protein desalting and small-molecule separations

    Chemical vapour deposition of freestanding sub-60 nm graphene gyroids

    Get PDF
    The direct chemical vapour deposition of freestanding graphene gyroids with controlled sub-60 nm unit cell sizes is demonstrated. Three-dimensional (3D) nickel templates were fabricated through electrodeposition into a selectively voided triblock terpolymer. The high temperature instability of sub-micron unit cell structures was effectively addressed through the early introduction of the carbon precursor, which stabilizes the metallized gyroidal templates. The as-grown graphene gyroids are self-supporting and can be transferred onto a variety of substrates. Furthermore, they represent the smallest free standing periodic graphene 3D structures yet produced with a pore size of tens of nm, as analysed by electron microscopy and optical spectroscopy. We discuss generality of our methodology for the synthesis of other types of nanoscale, 3D graphene assemblies, and the transferability of this approach to other 2D materials

    Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics.

    Get PDF
    Using thermally evaporated cesium carbonate (Cs2CO3) in an organic matrix, we present a novel strategy for efficient n-doping of monolayer graphene and a ∼90% reduction in its sheet resistance to ∼250 Ohm sq(-1). Photoemission spectroscopy confirms the presence of a large interface dipole of ∼0.9 eV between graphene and the Cs2CO3/organic matrix. This leads to a strong charge transfer based doping of graphene with a Fermi level shift of ∼1.0 eV. Using this approach we demonstrate efficient, standard industrial manufacturing process compatible graphene-based inverted organic light emitting diodes on glass and flexible substrates with efficiencies comparable to those of state-of-the-art ITO based devices.Funding via EU FP7 programme Grafol (Grant No. 285275) and EPSRC programme GRAPHTED (Grant No. EP/K016636/1) is acknowledged. P.R.K. acknowledges the Lindemann Trust Fellowship. J.A.A.-W. acknowledges a Research Fellowship from Churchill College, Cambridge. A.C.V. acknowledges the Conacyt Cambridge Scholarship and Roberto Rocca Fellowship.This is the author accepted manuscript. The final version is available from the Royal Society of Chemistry via http://dx.doi.org/10.1039/C5NR03246

    Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer

    Get PDF
    The mechanisms by which chemical vapor deposited (CVD) graphene and hexagonal boron nitride (h-BN) films can be released from a growth catalyst, such as widely used copper (Cu) foil, are systematically explored as a basis for an improved lift-off transfer. We show how intercalation processes allow the local Cu oxidation at the interface followed by selective oxide dissolution, which gently releases the 2D material (2DM) film. Interfacial composition change and selective dissolution can thereby be achieved in a single step or split into two individual process steps. We demonstrate that this method is not only highly versatile but also yields graphene and h-BN films of high quality regarding surface contamination, layer coherence, defects, and electronic properties, without requiring additional post-transfer annealing. We highlight how such transfers rely on targeted corrosion at the catalyst interface and discuss this in context of the wider CVD growth and 2DM transfer literature, thereby fostering an improved general understanding of widely used transfer processes, which is essential to numerous other applications.We acknowledge funding from the ERC (InsituNANO, grant 279342). R.W. acknowledges an EPSRC Doctoral Training Award (EP/M506485/1). During this work, S.T. was supported in parts by a DFG research fellowship under grant TA 1122/1-1:1. J.A.A.-W. acknowledges a Research Fellowship from Churchill College, Cambridge. Z.A.V.V. acknowledges funding from ESPRC grant EP/L016087/1. P.B. and B.S.J. thank the Danish National Research Foundation Centre for Nanostructured graphene, DNRF103, and EU Horizon 2020 “Graphene Flagship” 696656. T.J.B. and P.R.W. acknowledge financial support from EU FP7-6040007 “GLADIATOR” and Innovation Fund Denmark Da-Gate 0603-005668B. P.R.K. acknowledges a Lindemann Trust Fellowship
    corecore