4 research outputs found

    Characteristic chest CT findings for progressive cavities in Mycobacterium avium complex pulmonary disease: a retrospective cohort study

    No full text
    BACKGROUND: Although cavities are an important finding in Mycobacterium avium complex pulmonary disease (MAC-PD), there is little information regarding the types of cavities that indicate disease progression. This study was performed to identify cavity characteristics that were associated with disease progression in patients with MAC-PD. METHODS: This retrospective cohort study included 97 patients presenting with MAC-PD with cavities between December 2006 and June 2016. We compared initial and final computed tomography (CT) findings, classified 52 and 45 patients in the progressive and non-progressive cavity groups, respectively, and examined the progression-related imaging features in initial CT images. A progressive cavity was defined by more than two-fold increase in internal diameter or emergence of a new cavity around the initial cavity. RESULTS: Patients in the progressive group were older (p < 0.001), had a lower body mass index (p = 0.043), and showed higher diabetes complication rates (p = 0.005). The initial CT in the progressive group showed a longer maximum internal diameter of the cavity (p < 0.001) and higher rates of cavities close to the chest wall (p < 0.001), multiple cavities (p = 0.023), consolidation around the cavity (p < 0.001), atelectasis (p = 0.011), and pleural thickening (p < 0.001). Multivariable logistic regression analysis revealed that the maximum internal diameter of the cavity (odds ratio [OR]: 1.11, 95% confidence interval [CI]: 1.02–1.21; p=0.012) and consolidation around the cavity (OR: 16.15, 95% CI: 4.05–64.46; p < 0.001) were significantly associated with progressive cavities. In cavities with a maximum internal diameter of ≥10 mm and simultaneous consolidation, the probability of progression was as high as 96.2%. The 10-year mortality rates in the progressive and non-progressive cavity groups were 46.7 and 9.8% (p < 0.001), respectively, while the 10-year respiratory failure rates were 28.1 and 0%, respectively (p < 0.001). CONCLUSIONS: Large cavity size and consolidation on CT showed strong relationships with disease progression, which led to respiratory failure and high mortality rate

    Gut-liver interaction study on an all-polydimethylsiloxane microfluidic device integrating intestinal paracellular permeability assay

    No full text
    Microphysiological systems (MPSs) have attracted increasing attention as a method for simulating in vitro drug efficiency. In particular, the interaction between liver and intestine tissues is one of the primary targets since they are closely involved in drug absorption and metabolism. However, most of the intestine-liver MPSs reported previously require pumps, electrodes, and porous membranes for co-culture of cells and evaluation of intestinal permeability (i.e., Trans-Epithelial Electrical Resistance, TEER), requiring complex manufacturing processes and operations. In this study, we report an all-polydimethylsiloxane (PDMS) co-culture microfluidic device, connecting microchamber-based paracellular transport assay on gut microtissues to liver tissues matured on the same device. On one side of the device, HepaRG cells are confined within thin parallel grooves that induce their differentiation into hepatocytes. The other side of the device is connected with microchannels to the liver side and includes the gut tissues, organized above microchambers. Such microchambers allow the evaluation of paracellular permeability by fluorescence imaging. Thanks to the microfluidic device we investigated changes in intestinal permeability induced by differentiated hepatocyte excretion and found that Caco-2 permeability was decreased when co-culture with HepaRG. Due to its simplicity and straightforward implementation, this method is anticipated as an innovative and efficient approach to assess tissue barrier function in multi-organ on-chip experiments

    Next-generation proteomics of serum extracellular vesicles combined with single-cell RNA sequencing identifies MACROH2A1 associated with refractory COVID-19

    No full text
    Abstract Background The coronavirus disease 2019 (COVID-19) pandemic is widespread; however, accurate predictors of refractory cases have not yet been established. Circulating extracellular vesicles, involved in many pathological processes, are ideal resources for biomarker exploration. Methods To identify potential serum biomarkers and examine the proteins associated with the pathogenesis of refractory COVID-19, we conducted high-coverage proteomics on serum extracellular vesicles collected from 12 patients with COVID-19 at different disease severity levels and 4 healthy controls. Furthermore, single-cell RNA sequencing of peripheral blood mononuclear cells collected from 10 patients with COVID-19 and 5 healthy controls was performed. Results Among the 3046 extracellular vesicle proteins that were identified, expression of MACROH2A1 was significantly elevated in refractory cases compared to non-refractory cases; moreover, its expression was increased according to disease severity. In single-cell RNA sequencing of peripheral blood mononuclear cells, the expression of MACROH2A1 was localized to monocytes and elevated in critical cases. Consistently, single-nucleus RNA sequencing of lung tissues revealed that MACROH2A1 was highly expressed in monocytes and macrophages and was significantly elevated in fatal COVID-19. Moreover, molecular network analysis showed that pathways such as “estrogen signaling pathway,” “p160 steroid receptor coactivator (SRC) signaling pathway,” and “transcriptional regulation by STAT” were enriched in the transcriptome of monocytes in the peripheral blood mononuclear cells and lungs, and they were also commonly enriched in extracellular vesicle proteomics. Conclusions Our findings highlight that MACROH2A1 in extracellular vesicles is a potential biomarker of refractory COVID-19 and may reflect the pathogenesis of COVID-19 in monocytes
    corecore