3 research outputs found

    A Profile of Biomass Stove Use in Sri Lanka

    Get PDF
    A large body of evidence has confirmed that the indoor air pollution (IAP) from biomass fuel use is a major cause of premature deaths, and acute and chronic diseases. Over 78% of Sri Lankans use biomass fuel for cooking, the major source of IAP in developing countries. We conducted a review of the available literature and data sources to profile biomass fuel use in Sri Lanka. We also produced two maps (population density and biomass use; and cooking fuel sources by district) to illustrate the problem in a geographical context. The biomass use in Sri Lanka is limited to wood while coal, charcoal, and cow dung are not used. Government data sources indicate poor residents in rural areas are more likely to use biomass fuel. Respiratory diseases, which may have been caused by cooking emissions, are one of the leading causes of hospitalizations and death. The World Health Organization estimated that the number of deaths attributable to IAP in Sri Lanka in 2004 was 4300. Small scale studies have been conducted in-country in an attempt to associate biomass fuel use with cataracts, low birth weight, respiratory diseases and lung cancer. However, the IAP issue has not been broadly researched and is not prominent in Sri Lankan public health policies and programs to date. Our profile of Sri Lanka calls for further analytical studies and new innovative initiatives to inform public health policy, advocacy and program interventions to address the IAP problem of Sri Lanka

    What Is Threatening Forests in Protected Areas? A Global Assessment of Deforestation in Protected Areas, 2001–2018

    No full text
    The protection of forests is crucial to providing important ecosystem services, such as supplying clean air and water, safeguarding critical habitats for biodiversity, and reducing global greenhouse gas emissions. Despite this importance, global forest loss has steadily increased in recent decades. Protected Areas (PAs) currently account for almost 15% of Earth’s terrestrial surface and protect 5% of global tree cover and were developed as a principal approach to limit the impact of anthropogenic activities on natural, intact ecosystems and habitats. We assess global trends in forest loss inside and outside of PAs, and land cover following this forest loss, using a global map of tree cover loss and global maps of land cover. While forests in PAs experience loss at lower rates than non-protected forests, we find that the temporal trend of forest loss in PAs is markedly similar to that of all forest loss globally. We find that forest loss in PAs is most commonly—and increasingly—followed by shrubland, a broad category that could represent re-growing forest, agricultural fallows, or pasture lands in some regional contexts. Anthropogenic forest loss for agriculture is common in some regions, particularly in the global tropics, while wildfires, pests, and storm blowdown are a significant and consistent cause of forest loss in more northern latitudes, such as the United States, Canada, and Russia. Our study describes a process for screening tree cover loss and agriculture expansion taking place within PAs, and identification of priority targets for further site-specific assessments of threats to PAs. We illustrate an approach for more detailed assessment of forest loss in four case study PAs in Brazil, Indonesia, Democratic Republic of Congo, and the United States

    Assessment of metal contamination in Arabian/Persian Gulf fish: A review

    No full text
    corecore