46 research outputs found

    Jet noise suppression by porous plug nozzles

    Get PDF
    Jet noise suppression data presented earlier by Maestrello for porous plug nozzles were supplemented by the testing of a family of nozzles having an equivalent throat diameter of 11.77 cm. Two circular reference nozzles and eight plug nozzles having radius ratios of either 0.53 or 0.80 were tested at total pressure ratios of 1.60 to 4.00. Data were taken both with and without a forward motion or coannular flow jet, and some tests were made with a heated jet. Jet thrust was measured. The data were analyzed to show the effects of suppressor geometry on nozzle propulsive efficiency and jet noise. Aerodynamic testing of the nozzles was carried out in order to study the physical features that lead to the noise suppression. The aerodynamic flow phenomena were examined by the use of high speed shadowgraph cinematography, still shadowgraphs, extensive static pressure probe measurements, and two component laser Doppler velocimeter studies. The different measurement techniques correlated well with each other and demonstrated that the porous plug changes the shock cell structure of a standard nozzle into a series of smaller, periodic cell structures without strong shock waves. These structures become smaller in dimension and have reduced pressure variations as either the plug diameter or the porosity is increased, changes that also reduce the jet noise and decrease thrust efficiency

    Influence of nozzle asymmetry on supersonic jets

    No full text

    Noise-related shear-layer dynamics in annular jets

    No full text

    Development of Powered Resonance-tube Actuators for Aircraft Flow Control Applications

    No full text
    The present paper addresses both active-flow-control actuator technology development and the demonstration of the effectiveness of actuators that could be easily integrated into practical aircraft applications. The actuator used is an adaptation of the Hartmann oscillator. Demonstration experiments that illustrate the effectiveness of this actuator include cavity tone suppression at transonic speeds and the reduction of jet-impingement tones. The actuator concept is based on a high-speed jet aimed at the mouth of a cylindrical tube closed at the other end. The result is a high-amplitude self-sustaining fluctuating field accompanied by an intense narrowband tone, all in the region between the supply jet and the resonance tube. Using unsteady pressure sensors and flow visualization, we explored the effect of varying actuator parameters such as the spacing between the power jet and the resonance tube, supply pressure, resonance-tube depth, diameter, shape, and lateral spacing. By varying the depth of the tube, the frequency could be varied from about 1.6 kHz to over 10 kHz and amplitudes as high as 156 dB (microphone location dependent) were obtained in the vicinity of actuation. To integrate this concept into practical aircraft applications, two generations of a more complex version of this device known as the powered resonance-tube bank (PRTB) were developed and demonstrated. Results indicate that by using high-frequency excitation at 5-kHz suppression levels in excess of 20 dB were consistently obtained over a range of operating conditions in both cavity and impingement flow situations. Based on our results, we have grounds to believe that a properly designed PRTB has significant advantages over conventional actuators such as acoustic, piezo, and oscillatory microstructures

    Discrete Noise Spectrum Generated by Acoustically Excited Jet

    No full text

    High and Low Frequency Actuation Comparison for a Weapons Bay Cavity

    No full text

    On Controlling the Flow in a Mixing Layer Downstream of a "Lambda" Notch

    No full text
    corecore