69 research outputs found

    Recoil Implantation Using Gas-Phase Precursor Molecules

    Full text link
    Ion implantation underpins a vast range of devices and technologies that require precise control over the physical, chemical, electronic, magnetic and optical properties of materials. A variant termed “recoil implantation” – in which a precursor is deposited onto a substrate as a thin film and implanted via momentum transfer from incident energetic ions – has a number of compelling advantages, particularly when performed using an inert ion nano-beam [Fröch et al., Nat. Commun., 2020, 11, 5039]. However, a major drawback of this approach is that the implant species are limited to the constituents of solid thin films. Here we overcome this limitation by demonstrating recoil implantation using gas-phase precursors. Specifically, we fabricate nitrogen-vacancy (NV) color centers in diamond using an Ar+ ion beam and the nitrogen-containing precursor gases N2, NH3 and NF3. Our work expands the applicability of recoil implantation with the potential to be suitable to a larger portion of the periodic table, and to applications in which thin film deposition/removal is impractical

    Robust Solid-State Quantum System Operating at 800 K

    Full text link
    © 2017 American Chemical Society. Realization of quantum information and communications technologies requires robust, stable solid-state single-photon sources. However, most existing sources cease to function above cryogenic or room temperature due to thermal ionization or strong phonon coupling, which impedes their emissive and quantum properties. Here we present an efficient single-photon source based on a defect in a van der Waals crystal that is optically stable and operates at elevated temperatures of up to 800 K. The quantum nature of the source and the photon purity are maintained upon heating to 800 K and cooling back to room temperature. Our report of a robust high-temperature solid-state single photon source constitutes a significant step toward practical, integrated quantum technologies for real-world environments

    First-principles investigation of quantum emission from hBN defects

    Full text link
    © 2017 The Royal Society of Chemistry. Hexagonal boron nitride (hBN) has recently emerged as a fascinating platform for room-temperature quantum photonics due to the discovery of robust visible light single-photon emitters. In order to utilize these emitters, it is necessary to have a clear understanding of their atomic structure and the associated excitation processes that give rise to this single photon emission. Here, we performed density-functional theory (DFT) and constrained DFT calculations for a range of hBN point defects in order to identify potential emission candidates. By applying a number of criteria on the electronic structure of the ground state and the atomic structure of the excited states of the considered defects, and then calculating the Huang-Rhys (HR) factor, we found that the CBVN defect, in which a carbon atom substitutes a boron atom and the opposite nitrogen atom is removed, is a potential emission source with a HR factor of 1.66, in good agreement with the experimental HR factor. We calculated the photoluminescence (PL) line shape for this defect and found that it reproduces a number of key features in the experimental PL lineshape

    Resonant Excitation of Quantum Emitters in Hexagonal Boron Nitride

    Full text link
    © 2017 American Chemical Society. Quantum emitters in layered hexagonal boron nitride (hBN) have recently attracted a great deal of attention as promising single photon sources. In this work, we demonstrate resonant excitation of a single defect center in hBN, one of the most important prerequisites for employment of optical sources in quantum information processing applications. We observe spectral line widths of an hBN emitter narrower than 1 GHz while the emitter experiences spectral diffusion. Temporal photoluminescence measurements reveal an average spectral diffusion time of around 100 ms. An on-resonance photon antibunching measurement is also realized. Our results shed light on the potential use of quantum emitters from hBN in nanophotonics and quantum information processing applications

    Robust, directed assembly of fluorescent nanodiamonds

    Full text link
    © 2016 The Royal Society of Chemistry. Arrays of fluorescent nanoparticles are highly sought after for applications in sensing, nanophotonics and quantum communications. Here we present a simple and robust method of assembling fluorescent nanodiamonds into macroscopic arrays. Remarkably, the yield of this directed assembly process is greater than 90% and the assembled patterns withstand ultra-sonication for more than three hours. The assembly process is based on covalent bonding of carboxyl to amine functional carbon seeds and is applicable to any material, and to non-planar surfaces. Our results pave the way to directed assembly of sensors and nanophotonics devices

    Engineering and Tuning of Quantum Emitters in Few-Layer Hexagonal Boron Nitride

    Full text link
    © 2019 American Chemical Society. Quantum technologies require robust and photostable single photon emitters (SPEs). Hexagonal boron nitride (hBN) has recently emerged as a promising candidate to host bright and optically stable SPEs operating at room temperature. However, the emission wavelength of the fluorescent defects in hBN has, to date, been shown to be uncontrolled, with a widespread of zero phonon line (ZPL) energies spanning a broad spectral range (hundreds of nanometers), which hinders the potential development of hBN-based devices and applications. Here we demonstrate chemical vapor deposition growth of large-area, few-layer hBN films that host large quantities of SPEs: -100-200 per 10 × 10 μm 2 . More than 85% of the emitters have a ZPL at (580 ± 10) nm, a distribution that is an order of magnitude narrower than reported previously. Furthermore, we demonstrate tuning of the ZPL wavelength using ionic liquid devices over a spectral range of up to 15 nm-the largest obtained to date from any solid-state SPE. The fabricated devices illustrate the potential of hBN for the development of hybrid quantum nanophotonic and optoelectronic devices based on two-dimensional materials

    Charged Particle Induced Etching and Functionalization of Two-Dimensional Materials

    Full text link
    Focused electron beam induced deposition and etching (FEBID and FEBIE) are direct-write nanofabrication techniques in which an electron beam is used to achieve nanostructure functionalization, etching or deposition. Either alone or in combination with in situ plasmas, these techniques can also be used to accelerate reactions that occur in ambient environment, with simultaneous high-resolution imaging. Here, we describe our recent work on etching, functionalization and directed assembly of a range of nanoand two-dimensional materials using temperature-dependent FEBIE experiments in an environmental scanning electron microscope (ESEM). As examples of the application of these techniques, we demonstrate processes for assembling arrays of nanodiamonds that can be used as magnetic field sensors, as well as for controlled etching of hexagonal boron nitride (hBN) and black phosphorus (BP)

    Room temperature coherent control of spin defects in hexagonal boron nitride

    Full text link
    Optically active spin defects are promising candidates for solid-state quantum information and sensing applications. To use these defects in quantum applications coherent manipulation of their spin state is required. Here, we realize coherent control of ensembles of boron vacancy centers in hexagonal boron nitride (hBN). Specifically, by applying pulsed spin resonance protocols, we measure a spin-lattice relaxation time of 18 microseconds and a spin coherence time of 2 microseconds at room temperature. The spin-lattice relaxation time increases by three orders of magnitude at cryogenic temperature. By applying a method to decouple the spin state from its inhomogeneous nuclear environment the optically detected magnetic resonance linewidth is substantially reduced to several tens of kilohertz. Our results are important for the employment of van der Waals materials for quantum technologies, specifically in the context of high resolution quantum sensing of two-dimensional heterostructures, nanoscale devices, and emerging atomically thin magnets

    Quantum random number generation using a solid state single photon source

    Full text link
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. In this work we couple bright room-Temperature single-photon emission from a hexagonal boron nitride atomic defect into a laser-written photonic chip. We perform single photon state manipulation with evanescently coupled waveguides acting as a multiple beam splitter, and generate a superposition state maintaining single photon purity. We demonstrate that such states can be utilized for quantum random number generation
    • …
    corecore