4 research outputs found
Heat induced epitope retrieval for rabies virus detection by direct fluorescent antibody test in formalin-fixed dog brain tissues
There is a great need for a chemical method of tissue preservation that would allow sample storage for extended periods at room temperature. This study aimed at retrieving and detecting rabies virus antigen by direct fluorescent antibody test (DFAT) in formalin-fixed dog brain tissues. Forty fresh dog brain specimens were collected as paired samples from rabies suspected cases that were received for postmortem detection of rabies in the Central Diagnostic Laboratory, National Veterinary Research Institute, Vom. One portion of each paired sample was prepared for fresh fluorescent antibody testing and the other portion was prepared for epitope retrieval and florescent antibody testing following fixation in 10% neutral buffered formalin. DFAT on formalin-fixed tissue exhibited a sensitivity of 100% in comparison to DFAT on fresh-tissue. No false positive result was obtained in formalin-fixed DFAT procedure, demonstrating 100% specificity. There was no apparent difference in the intensity of fluorescence in DFAT on fresh sample and formalin-fixed DFAT following heat induced epitope retrieval (concordance = 98%; 95% C.I. 0.9660 to 0.9903). The strength of agreement between DFAT on formalin-fixed and DFAT on fresh tissue was very good (Cohen’s kappa coefficient value= 1.000; 95% C.I. 1.000-1.000). This study provides new information on the retrieval of rabies antigen by heat induced epitope retrieval for DFAT on formalinized tissues. Formalin could therefore, be used henceforth to fix tissues of rabies suspected cases for routine diagnosis, transportation or archival purposes. The heat induced epitope retrieval can be routinely used to retrieve rabies virus antigen for DFAT in cases where only formalin-fixed tissues are available or when preservation by freezing is difficult
Whole genome sequencing for rapid characterization of rabies virus using nanopore technology
No abstract available
Human Exposure to Novel Bartonella Species from Contact with Fruit Bats
Twice a year in southwestern Nigeria, during a traditional bat festival, community participants enter designated caves to capture bats, which are then consumed for food or traded. We investigated the presence of Bartonella species in Egyptian fruit bats (Rousettus aegyptiacus) and bat flies (Eucampsipoda africana) from these caves and assessed whether Bartonella infections had occurred in persons from the surrounding communities. Our results indicate that these bats and flies harbor Bartonella strains, which multilocus sequence typing indicated probably represent a novel Bartonella species, proposed as Bartonella rousetti. In serum from 8 of 204 persons, we detected antibodies to B. rousetti without cross-reactivity to other Bartonella species. This work suggests that bat-associated Bartonella strains might be capable of infecting humans
Bat and lyssavirus exposure among humans in area that celebrates bat festival, Nigeria, 2010 and 2013
Using questionnaires and serologic testing, we evaluated bat and lyssavirus exposure among persons in an area of Nigeria that celebrates a bat festival. Bats from festival caves underwent serologic testing for phylogroup II lyssaviruses (Lagos bat virus, Shimoni bat virus, Mokola virus). The enrolled households consisted of 2,112 persons, among whom 213 (10%) were reported to have ever had bat contact (having touched a bat, having been bitten by a bat, or having been scratched by a bat) and 52 (2%) to have ever been bitten by a bat. Of 203 participants with bat contact, 3 (1%) had received rabies vaccination. No participant had neutralizing antibodies to phylogroup II lyssaviruses, but ≥50% of bats had neutralizing antibodies to these lyssaviruses. Even though we found no evidence of phylogroup II lyssavirus exposure among humans, persons interacting with bats in the area could benefit from practicing bat-related health precautions