56 research outputs found

    Связь права и литературы как новое направление юриспруденции

    Get PDF
    Хижняк Ю. В. Связь права и литературы как новое направление юриспруденции / Ю. В. Хижняк // Актуальні проблеми держави і права : зб. наук. пр. / редкол.: С. В. Ківалов (голов. ред.), В. М. Дрьомін (заст. голов. ред.), Ю .П. Аленін [та ін.] ;МОНмолодьспорт України, НУ «ОЮА». – Одеса : Юрид. л-ра, 2012. – Вип. 67. - С. 171-178.In the article contained comparative analysis of understanding of humanities in Europe and America on the example of acquisition of scientific status American Criticism of Oratory

    Changes in the structure and dominance of the zooplankton community of the Kremenchuk Reservoir under the effect of climate changes

    Get PDF
    Zooplankton plays an important role in aquatic food webs and changes in its abundance and diversity under changing climatic conditions can significantly affect the abundance and diversity of other aquatic organisms. The aim of the study was to assess quantitative and qualitative parameters of zooplankton development, dynamics of development of its dominant groups and the effect of water temperature. Species composition and abundance of zooplankton of the Kremenchuk Reservoir were studied in 2006, 2010–2012 and 2020 in relation to water temperature and pollution. Zooplankton species diversity fluctuated significantly over the years of the study. A total of 46 taxa were recorded in the reservoir during the study period. The number of recorded zooplankton taxa ranged 26 to 32 depending on the year. The most abundant zooplankters were Chydorus sphaericus, Copepoda nauplii, Brachionus diversicornis. The abundance of zooplankters in the reservoir during the study period ranged 23·103 to 256·103 ind./m3, and biomass 0.14 to 0.89 g/m3. A significant positive relationship was observed between the abundance of cladocerans, including some individual species (Ch. sphaericus and Ceriodaphnia sp.), and water temperature. Indicator species of water pollution in different years and in different parts of the Kremenchuk Reservoir differed significantly, which probably depended on the presence or absence (in a certain period of time) of polluting discharges. The total saprobity index in different years in different parts of the reservoir was in the range of 1.5–1.9. Structural indicators of zooplankton and its dominant complexes characterize the water in the Kremenchuk Reservoir as β-mesosaprobic. It is probably too early to assess the impact of climate change zooplankton as these changes are still unstable and short in time, but it is necessary to constantly monitor the biota of aquatic ecosystems to further study and summarize the data, which could later allow an identification of such changes

    Measurement of the mass difference and the binding energy of the hypertriton and antihypertriton

    Full text link
    According to the CPT theorem, which states that the combined operation of charge conjugation, parity transformation and time reversal must be conserved, particles and their antiparticles should have the same mass and lifetime but opposite charge and magnetic moment. Here, we test CPT symmetry in a nucleus containing a strange quark, more specifically in the hypertriton. This hypernucleus is the lightest one yet discovered and consists of a proton, a neutron, and a Λ\Lambda hyperon. With data recorded by the STAR detector{\cite{TPC,HFT,TOF}} at the Relativistic Heavy Ion Collider, we measure the Λ\Lambda hyperon binding energy BΛB_{\Lambda} for the hypertriton, and find that it differs from the widely used value{\cite{B_1973}} and from predictions{\cite{2019_weak, 1995_weak, 2002_weak, 2014_weak}}, where the hypertriton is treated as a weakly bound system. Our results place stringent constraints on the hyperon-nucleon interaction{\cite{Hammer2002, STAR-antiH3L}}, and have implications for understanding neutron star interiors, where strange matter may be present{\cite{Chatterjee2016}}. A precise comparison of the masses of the hypertriton and the antihypertriton allows us to test CPT symmetry in a nucleus with strangeness for the first time, and we observe no deviation from the expected exact symmetry

    Measurement of Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He binding energy in Au+Au collisions at sNN\sqrt{s_\mathrm{NN}} = 3 GeV

    Full text link
    Measurements of mass and Λ\Lambda binding energy of Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He in Au+Au collisions at sNN=3\sqrt{s_{_{\rm NN}}}=3 GeV are presented, with an aim to address the charge symmetry breaking (CSB) problem in hypernuclei systems with atomic number A = 4. The Λ\Lambda binding energies are measured to be 2.22±0.06(stat.)±0.14(syst.)\rm 2.22\pm0.06(stat.) \pm0.14(syst.) MeV and 2.38±0.13(stat.)±0.12(syst.)\rm 2.38\pm0.13(stat.) \pm0.12(syst.) MeV for Λ4H\rm ^4_{\Lambda}H and Λ4He\rm ^4_{\Lambda}He, respectively. The measured Λ\Lambda binding-energy difference is 0.16±0.14(stat.)±0.10(syst.)\rm 0.16\pm0.14(stat.)\pm0.10(syst.) MeV for ground states. Combined with the γ\gamma-ray transition energies, the binding-energy difference for excited states is 0.16±0.14(stat.)±0.10(syst.)\rm -0.16\pm0.14(stat.)\pm0.10(syst.) MeV, which is negative and comparable to the value of the ground states within uncertainties. These new measurements on the Λ\Lambda binding-energy difference in A = 4 hypernuclei systems are consistent with the theoretical calculations that result in ΔBΛ4(1exc+)ΔBΛ4(0g.s.+)<0\rm \Delta B_{\Lambda}^4(1_{exc}^{+})\approx -\Delta B_{\Lambda}^4(0_{g.s.}^{+})<0 and present a new method for the study of CSB effect using relativistic heavy-ion collisions.Comment: 8 pages, 5 figure

    Measurement of electrons from open heavy-flavor hadron decays in Au+Au collisions at sNN=200\sqrt{s_{\rm NN}}=200 GeV with the STAR detector

    Full text link
    We report a new measurement of the production of electrons from open heavy-flavor hadron decays (HFEs) at mid-rapidity (y<|y|< 0.7) in Au+Au collisions at sNN=200\sqrt{s_{\rm NN}}=200 GeV. Invariant yields of HFEs are measured for the transverse momentum range of 3.5<pT<93.5 < p_{\rm T} < 9 GeV/cc in various configurations of the collision geometry. The HFE yields in head-on Au+Au collisions are suppressed by approximately a factor of 2 compared to that in pp+pp collisions scaled by the average number of binary collisions, indicating strong interactions between heavy quarks and the hot and dense medium created in heavy-ion collisions. Comparison of these results with models provides additional tests of theoretical calculations of heavy quark energy loss in the quark-gluon plasma
    corecore