4 research outputs found

    Chimeric MrNV-GE11-VLPs serve as a nano-container to deliver Doxorubicin into cancer cells

    Get PDF
    We have reported that virus-like particle from shrimp virus, MrNV-VLP, effectively encapsulates and delivers plasmid DNA and dsRNA into Sf9 insect cells and shrimp tissues. Additionally, modifying VLP with GE-11 peptide extension on the surface (so called, E-MrNV-GE11-VLP) allows them to interact specifically with the EGFR-positive SW480 cancer cells. This work extrapolated the use of E-MrNV-GE11-VLP to encapsulate and deliver doxorubicin (DOX) towards SW480 cells. The results showed that DOX was passively loaded into VLPs in a molar ratio of >200 DOX/VLP equivalent to a loading efficiency of 3%. Specific targeting of E-MrNV-GE11-VLP + DOX and its anti-cancer effect towards SW480 was more pronounced than that of N-MrNV-VLP + DOX, suggesting an interaction and internalization of E-MrNV-GE11-VLP through surface EGFR. This claim was also supported by a lower DOX delivery into MCF7 than SW480 cells. Finally, the cell cytotoxicity assay showed that E-MrNV-GE11-VLP + DOX significantly decreased cell viability in SW480 cells more than that by N-MrNV-VLP + DOX (P<0.05), while its cytotoxicity effect on MFC7 cells was much lower than on SW480 cells. This study provides insights into how to develop target-specific drug delivery for carrying therapeutic agents towards specific tumor cells

    Comparative mRNA Expression of eEF1A Isoforms and a PI3K/Akt/mTOR Pathway in a Cellular Model of Parkinson’s Disease

    No full text
    The PI3K/Akt/mTOR pathway is one of dysregulated pathways in Parkinson’s disease (PD). Previous studies in nonneuronal cells showed that Akt regulation can be increased by eukaryotic protein elongation factor 1 alpha 2 (eEF1A2). eEF1A2 is proposed to contribute protection against apoptotic death, likely through activation of the PI3K/Akt pathway. Whether eEF1A2 plays a role in the prevention of cell death in PD has not been investigated. Recently, gene profiling on dopaminergic neurons from postmortem PD patients showed both upregulation and downregulation of some PI3K and mTOR genes. In this paper, the expression of all gene members of the PI3K/Akt/mTOR pathway in relation to those of the eEF1A isoforms in a cellular model of PD was investigated at the mRNA level. The results showed a similar trend of upregulation of genes of the eEF1A isoforms (eEF1A1 and eEF1A2) and of the PI3K (classes I–III)/Akt (Akt1, Akt2, and Akt3)/mTOR (mTORC1 and mTORC2) pathway in both nondifferentiated and differentiated SH-SY5Y dopaminergic cells treated with 1-methyl-4-phenylpyridinium (MPP+). Upregulation of eEF1A2, Akt1, and mTORC1 was consistent with the relative increase of eEF1A2, Akt, phospho-Akt, and mTORC1 proteins. The possible role of eEF1A isoforms in the regulation of the PI3K/Akt/mTOR pathway in PD is discussed

    Expression of VEGF165 and VEGF165b during ovarian follicular development

    No full text
    Objective: To investigate the role of vascular endothelial growth factor (VEGF)165a, VEGF165b, and VEGF receptor (VEGFR) in the development of bovine follicles. Methods: We cultured follicular cells that were collected from small, medium, and large sized bovine follicles with estrogen and measured the expression of VEGF, VEGFR2 and VEGF165b by Western blot analysis and immunofluorescence. Results: The expression of VEGF165 increased in all follicle sizes and the expression of VEGF165b was increased in the small and large follicles after culturing in an estrogen containing medium. The expression of VEGFR2 was increased in the medium and large follicles after culturing with estrogen for 96 h. VEGF165 was activated at 100 ng/mL estrogen in the large follicles for 96 h. In addition, VEGFR2 was upregulated in the medium and large follicles after treated with 100 ng/mL estrogen for 96 h. Conclusions: This evidence suggests that the expression of VEGF165 and VEGFR is associated with estrogen stimulation during the development of bovine follicles and in an autocrine or paracrine manner. This reveals an advantage during oocyte maturation in vitro

    Chimeric virus-like particles (VLPs) designed from shrimp nodavirus (MrNV) capsid protein specifically target EGFR-positive human colorectal cancer cells

    No full text
    International audienceAbstract Recombinant MrNV capsid protein has been shown to effectively deliver plasmid DNA and dsRNA into Sf9 insect cells and shrimp tissues. To extend its application to cancer cell-targeting drug delivery, we created three different types of chimeric MrNV virus-like particles (VLPs) (R-MrNV, I-MrNV, and E-MrNV) that have specificity toward the epidermal growth factor receptor (EGFR), a cancer cell biomarker, by incorporating the EGFR-specific GE11 peptide at 3 different locations within the host cell recognition site of the capsid. All three chimeric MrNV-VLPs preserved the ability to form a mulberry-like VLP structure and to encapsulate EGFP DNA plasmid with an efficiency comparable to that previously reported for normal MrNV (N-MrNV). Compared to N-MrNV, the chimeric R-MrNV and E-MrNV carrying the exposed GE-11 peptide showed a significantly enhanced binding and internalization abilities that were specific towards EGFR expression in colorectal cancer cells (SW480). Specific targeting of chimeric MrNV to EGFR was proven by both EGFR silencing with siRNA vector and a competition with excess GE-11 peptide as well as the use of EGFR-negative colorectal cells (SW620) and breast cancer cells (MCF7). We demonstrated here that both chimeric R-MrNV and E-MrNV could be used to encapsulate cargo such as exogenous DNA and deliver it specifically to EGFR-positive cells. Our study presents the potential use of surface-modified VLPs of shrimp virus origin as nanocontainers for targeted cancer drug delivery
    corecore