1,665 research outputs found

    Physical Principles of the Amplification of Electromagnetic Radiation Due to Negative Electron Masses in a Semiconductor Superlattice

    Get PDF
    In a superlattice placed in crossed electric and magnetic fields, under certain conditions, the inversion of electron population can appear at which the average energy of electrons is above the middle of the miniband and the effective mass of the electron is negative. This is the implementation of the negative effective mass amplifier and generator (NEMAG) in the superlattice. It can result in the amplification and generation of terahertz radiation even in the absence of negative differential conductivity.Comment: 5 pages, 3 figure

    Status of Diamond Detector Development for Beam Halo Investigation at ATF2

    No full text
    Work supported by Chinese Scholarship Council - THPME092, ISBN 978-3-95450-132-8International audienceWe are developing a diamond detector for beam halo and Compton spectrum diagnostics after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for ILC and CLIC linear collider projects. Tests of a 500 μm thick sCVD diamond detector with a dimension of 4.5 mm×4.5 mm have been carried out with radioactive sources and with electron beam from PHIL low energy (<10 MeV) photo-injector at LAL. The tests at PHIL were done with different beam intensities in air, just after the exit window at the end of the beam line, to test the response of the diamond detector and the readout electronics. We have successfully detected signals from single electrons, using a 40 dB amplifier, and from an electron beam of 108 electrons, using a 24 dB attenuator. A diamond sensor with 4 strips has been designed and fabricated for installation in the vacuum chambers of ATF2 and PHIL, with the aim to scan both the beam halo (with 2 strips of 1.5 mm×4 mm) and the beam core (with 2 strips of 0.1 mm×4 mm) transverse distributions

    Amplification of electromagnetic radiation in a superlattice placed in a tilted magnetic field

    Get PDF
    The interaction of electrons in a superlattice with electromagnetic radiation in presence of static electric and magnetic fields is investigated. The electric field is directed along the superlattice axis while the magnetic field is inclined at an arbitrary angle to the axis of superlattice. It is shown that the dependence of current in the superlattice on electric field in the general case can have several maxima. In some regions of electric and magnetic field values, the absorption coefficient for high frequency electromagnetic radiation can be negative that means the electromagnetic wave will be amplified. We note that negative absorption in the system is possible at some conditions at the region of positive differential conductivity in contrast to classical Bloch oscillator in which amplification takes place in case of negative differential conductivity only. This phenomenon can be used for the design of a teraherz amplifier and generator based on the superlattice
    corecore