5 research outputs found

    Kinetics of the Synthesis of Aluminum Boride by the Self-Propagating High-Temperature Synthesis Method

    Get PDF
    The influence of certain factors on the kinetics of the process of obtaining aluminum borides (burning rate, ingot formation, and phase separation) was investigated. In this study, we report the registration of diboride using the SHS protocol. The synthesis of aluminum diboride from boric anhydride occurred by the aluminothermic method. The initial components were boron trioxide and aluminum in the form of powders. Researchers paid special attention to the degree of grinding of the charge fluxing substances. The influence this had on the rate of development of the degree of charge concentration was studied. To calculate the degree of charge, a composition was chosen according to the speed obtained from a number of experiments where melting was carried out with the following charge densities in g/cm(3): 0.80; 1.08; 1.18; 1.74. The method of melting was ignition from above. The experimental results allowed us to conclude that the nature of the change in the combustion rate of the system, where there was an excess of the reducing agent in the charge, is the same. An increase in the combustion rate, where there was an excess of aluminum of up to 20%, was likely due to the fact that the reaction area of the charge components increased. In addition, an increase in speed can be explained by a decrease in heat losses due to a reduction in the melting time. With an increase in excess aluminum above 20% of the stoichiometry, the observed decrease in the combustion rate can be explained by a decrease in the specific heat of the process due to the melting of the excess aluminum, which played the role of a ballast

    Optimization of Aluminum Boride Synthesis in the Self-Propagating High-Temperature Synthesis Mode to Create Waste-Free Technology

    No full text
    This paper is the continuation of our previous paper. In this work, we optimized the synthesis of aluminum borides by the SHS method. The purpose of the research was to develop the foundations of waste-free technology. The initial components were powders of boric anhydride (B2O3), aluminum (Al), the oxide-heating additive (KNO3), various fluxing additives, including mixed ones. The optimal ratios of the initial components for increasing the yield of aluminum boride with a high boron content and obtaining slag suitable for the production of high-alumina clinkers were determined. Studies have shown that the development of a waste-free technology for producing aluminum borides by the method of self-propagating high-temperature synthesis (SHS) is possible and yields target (alloy) and by-product (slag) products that meet the requirements for chemical and phase composition

    Kinetics of the Synthesis of Aluminum Boride by the Self-Propagating High-Temperature Synthesis Method

    No full text
    The influence of certain factors on the kinetics of the process of obtaining aluminum borides (burning rate, ingot formation, and phase separation) was investigated. In this study, we report the registration of diboride using the SHS protocol. The synthesis of aluminum diboride from boric anhydride occurred by the aluminothermic method. The initial components were boron trioxide and aluminum in the form of powders. Researchers paid special attention to the degree of grinding of the charge fluxing substances. The influence this had on the rate of development of the degree of charge concentration was studied. To calculate the degree of charge, a composition was chosen according to the speed obtained from a number of experiments where melting was carried out with the following charge densities in g/cm3: 0.80; 1.08; 1.18; 1.74. The method of melting was ignition from above. The experimental results allowed us to conclude that the nature of the change in the combustion rate of the system, where there was an excess of the reducing agent in the charge, is the same. An increase in the combustion rate, where there was an excess of aluminum of up to 20%, was likely due to the fact that the reaction area of the charge components increased. In addition, an increase in speed can be explained by a decrease in heat losses due to a reduction in the melting time. With an increase in excess aluminum above 20% of the stoichiometry, the observed decrease in the combustion rate can be explained by a decrease in the specific heat of the process due to the melting of the excess aluminum, which played the role of a ballast

    Optimization of Aluminum Boride Synthesis in the Self-Propagating High-Temperature Synthesis Mode to Create Waste-Free Technology

    No full text
    This paper is the continuation of our previous paper. In this work, we optimized the synthesis of aluminum borides by the SHS method. The purpose of the research was to develop the foundations of waste-free technology. The initial components were powders of boric anhydride (B2O3), aluminum (Al), the oxide-heating additive (KNO3), various fluxing additives, including mixed ones. The optimal ratios of the initial components for increasing the yield of aluminum boride with a high boron content and obtaining slag suitable for the production of high-alumina clinkers were determined. Studies have shown that the development of a waste-free technology for producing aluminum borides by the method of self-propagating high-temperature synthesis (SHS) is possible and yields target (alloy) and by-product (slag) products that meet the requirements for chemical and phase composition

    Investigation of the Effect of Aluminum Powder on the Combustion Rate of the Composite

    No full text
    This article discusses the combustion of high-energy systems based on the oxidizers ammonium nitrate, potassium nitrate, and a mixture of highly active aluminum grade PAP-1 under conditions of a deficiency or excess oxidant α, under a pressure reduction in the range of 0.1–3 MPa. The objective of this study is to develop materials for the production of high-energy compositions based on oxidizers of ammonium and potassium nitrate, fuel binder, and metallic fuel in the form of aluminum powders ASD-6 and PAP-1. The influence of the amount of excess oxidizer, the amount of metallic fuel, and the grade of aluminum on the rate and completeness of combustion of a high-energy composition have been studied. Experiments were carried out on the studied high-energy systems, depending on the grade of aluminum used and the excess of the oxidizing agent α, and the influence of pressure on the burning rate. The compositions of high-energy compositions based on highly active aluminum with the highest combustion rate of mixtures and combustion completeness were determined
    corecore