23 research outputs found

    A neutral atom quantum register

    Full text link
    We demonstrate the realization of a quantum register using a string of single neutral atoms which are trapped in an optical dipole trap. The atoms are selectively and coherently manipulated in a magnetic field gradient using microwave radiation. Our addressing scheme operates with a high spatial resolution and qubit rotations on individual atoms are performed with 99% contrast. In a final read-out operation we analyze each individual atomic state. Finally, we have measured the coherence time and identified the predominant dephasing mechanism for our register.Comment: 4 pages, 4 figure

    Precision preparation of strings of trapped neutral atoms

    Get PDF
    We have recently demonstrated the creation of regular strings of neutral caesium atoms in a standing wave optical dipole trap using optical tweezers [Y. Miroshnychenko et al., Nature, in press (2006)]. The rearrangement is realized atom-by-atom, extracting an atom and re-inserting it at the desired position with sub-micrometer resolution. We describe our experimental setup and present detailed measurements as well as simple analytical models for the resolution of the extraction process, for the precision of the insertion, and for heating processes. We compare two different methods of insertion, one of which permits the placement of two atoms into one optical micropotential. The theoretical models largely explain our experimental results and allow us to identify the main limiting factors for the precision and efficiency of the manipulations. Strategies for future improvements are discussed.Comment: 25 pages, 18 figure

    Adiabatic Quantum State Manipulation of Single Trapped Atoms

    Get PDF
    We use microwave induced adiabatic passages for selective spin flips within a string of optically trapped individual neutral Cs atoms. We position-dependently shift the atomic transition frequency with a magnetic field gradient. To flip the spin of a selected atom, we optically measure its position and sweep the microwave frequency across its respective resonance frequency. We analyze the addressing resolution and the experimental robustness of this scheme. Furthermore, we show that adiabatic spin flips can also be induced with a fixed microwave frequency by deterministically transporting the atoms across the position of resonance.Comment: 4 pages, 4 figure

    Coherence properties and quantum state transportation in an optical conveyor belt

    Get PDF
    We have prepared and detected quantum coherences with long dephasing times at the level of single trapped cesium atoms. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified and are of technical rather than fundamental nature. We present an analytical model of the reversible and irreversible dephasing mechanisms. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.Comment: 4 pages, 3 figure

    Continued imaging of the transport of a single neutral atom

    Get PDF
    We have continuously imaged the controlled motion of a single atom as well as of a small number of distinguishable atoms with observation times exceeding one minute. The Cesium atoms are confined to potential wells of a standing wave optical dipole trap which allows to transport them over macroscopic distances. The atoms are imaged by an intensified CCD camera, and spatial resolution near the diffraction limit is obtained

    All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators

    Full text link
    We review our recent work on tunable, ultrahigh quality factor whispering-gallery-mode bottle microresonators and highlight their applications in nonlinear optics and in quantum optics experiments. Our resonators combine ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume, and near-lossless fiber coupling, with a simple and customizable mode structure enabling full tunability. We study, theoretically and experimentally, nonlinear all-optical switching via the Kerr effect when the resonator is operated in an add-drop configuration. This allows us to optically route a single-wavelength cw optical signal between two fiber ports with high efficiency. Finally, we report on progress towards strong coupling of single rubidium atoms to an ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B. Changes according to referee suggestions: minor corrections to some figures and captions, clarification of some points in the text, added references, added new paragraph with results on atom-resonator interactio

    Age-related increases in parathyroid hormone may be antecedent to both osteoporosis and dementia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Numerous studies have reported that age-induced increased parathyroid hormone plasma levels are associated with cognitive decline and dementia. Little is known about the correlation that may exist between neurological processing speed, cognition and bone density in cases of hyperparathyroidism. Thus, we decided to determine if parathyroid hormone levels correlate to processing speed and/or bone density.</p> <p>Methods</p> <p>The recruited subjects that met the inclusion criteria (n = 92, age-matched, age 18-90 years, mean = 58.85, SD = 15.47) were evaluated for plasma parathyroid hormone levels and these levels were statistically correlated with event-related P300 potentials. Groups were compared for age, bone density and P300 latency. One-tailed tests were used to ascertain the statistical significance of the correlations. The study groups were categorized and analyzed for differences of parathyroid hormone levels: parathyroid hormone levels <30 (n = 30, mean = 22.7 ± 5.6 SD) and PTH levels >30 (n = 62, mean = 62.4 ± 28.3 SD, p ≤ 02).</p> <p>Results</p> <p>Patients with parathyroid hormone levels <30 showed statistically significantly less P300 latency (P300 = 332.7 ± 4.8 SE) relative to those with parathyroid hormone levels >30, which demonstrated greater P300 latency (P300 = 345.7 ± 3.6 SE, p = .02). Participants with parathyroid hormone values <30 (n = 26) were found to have statistically significantly higher bone density (M = -1.25 ± .31 SE) than those with parathyroid hormone values >30 (n = 48, M = -1.85 ± .19 SE, p = .04).</p> <p>Conclusion</p> <p>Our findings of a statistically lower bone density and prolonged P300 in patients with high parathyroid hormone levels may suggest that increased parathyroid hormone levels coupled with prolonged P300 latency may become putative biological markers of both dementia and osteoporosis and warrant intensive investigation.</p

    Indo-European Migration and Mediterranean Peoples in Siberia

    Full text link
    Предпринят многомерный краниометрический анализ 400 групп с территории Евразии. На основании полученной информации проведен кластерный анализ, который показал генетические сгущения этносов, векторы сходства или различий между ними. Показан антропологический покров Евразии, сформировавшийся в ходе исключительно сложных исторических событий. Продвижение средиземноморцев на территории Евразии сопровождалось не только взаимодействием различных культурных элементов, но и смешением, распространением (иногда на значительные расстояния от их очага формирования). Подобные исследования дают новые аргументы для понимания этногенетических процессов в Евразии.The article reflects the results of a multivariate craniometric analysis of 400 groups from the territory of Europe. Relying on these data, the author undertakes a cluster analysis proving to the genetic concentration of peoples, vectors of similarity and difference thereof. The article also demonstrates the anthropological distribution in Europe formed as a result of extremely complex historic events. The Mediterranean peoples' advancement on the territory of Eurasia was not only accompanied by the interaction of different cultural elements, but also shifts, and dissemination which occasionally took place at a considerable distance from the territory of origin. This kind of research helps acquire new facts for a deeper understanding of Eurasian ethnogenetic processes

    Submicrometer position control of single trapped neutral atoms

    Get PDF
    We optically detect the positions of single neutral cesium atoms stored in a standing wave dipole trap with a subwavelength resolution of 143 nm rms. The distance between two simultaneously trapped atoms is measured with an even higher precision of 36 nm rms. We resolve the discreteness of the interatomic distances due to the 532 nm spatial period of the standing wave potential and infer the exact number of trapping potential wells separating the atoms. Finally, combining an initial position detection with a controlled transport, we place single atoms at a predetermined position along the trap axis to within 300 nm rms
    corecore