22 research outputs found

    Long-lived Volcanic Centers of Kamchatka Geothermal Areas

    Get PDF
    The current problems of hydrothermal processes and ore-forming systems are volcanic heat sources and mechanisms of heat transfer. In Pauzhetsky, Semyachik and Mutnovsky geothermal areas in Kamchatka, active long-lived volcanic centers have been studied, with which high-temperature hydrothermal systems are associated. In the Banno-Paratunsky geothermal area the Paleogene and Neogene long-lived volcanic centers were identified, with which low-temperature hydrothermal systems are associated. The geological history of the long-lived volcanic centers development is characterized by changes in their structure as a result of hydrothermal-magmatic activity. These changes are manifested in the generation and evolution of magma chambers in the mantle and in the Earth’s crust. Basalt melts of the mantle chambers transport the deep heat to the Earth’s surface through plane magmatic channels without significant losses. The heat flow of these volcanic centers is short-lived and is characterized by a significant capacity of ~8,000 kcal/km2s. The long-lived volcanic centers are characterized by the presence of magma chambers in the Earth's crust. They shield the part of the mantle heat flow. Their thermal capacity on the Earth's surface is estimated from 1000 kcal/km2s to 5000 kcal/km2s. It is assumed that a significant amount of thermal energy is retained in the long-lived volcanic centers. It is spent on formation and activity of the chambers as well as the convective hydrothermal ore-forming systems. The evolution of such centers is accompanied by the formation of complexes of metamorphic rocks which interaction with high-temperature mantle melts is accompanied by redox reactions like combustion. As a result of these reactions, thermal energy is produced in such magma chambers. A long-lived jet magmatic system is formed, and it provides the transfer of mantle heat. Heat transfer in the system is accompanied by minimization of heat losses, accumulation of heat and its additional generation which is necessary for the heat transfer in the structures with low thermal conductivity. The formation, evolution and extinction of magma chambers and reservoirs in such heat-conducting structures are controlled by the thermophysical properties of the rocks, their geological structure and redox processes in them

    ГЕОЛОГИЯ И ИСТОРИЯ БОЛЬШИХ АКТИВНЫХ ВУЛКАНОВ МЕКСИКИ

    No full text
    En este trabajo se consideraron algunos de los grandes volcanes que se encuentran en la Faja Volcánica Transmexicana, son el volcán Colima y pico de Orizaba (Citlaltépetl). El volcán de Colima o Fuego de Colima (19°30'45”; 103°37') tiene una elevación sobre el nivel del mar de 386 m, por lo que representa la octava cima más alta del país. Su nombre Colima proviene de la lengua náhuatl que significa “El Dios del fuego que domina”. El volcán está ubicado a unos 100 km al sur de la ciudad de Guadalajara y a 30 km al norte de la ciudad de Colima. El volcán de Colima forma parte de una cadena volcánica con orientación N-S, que está constituida por los volcanes: Cántaro, Nevado de Colima y el volcán de Colima. El volcán Citlaltépetl (19°01'N, 97°16'W; 5 675 m) representa la cima más alta del país. El Pico de Orizaba o Citlaltépetl que significa “Montaña de la Estrella” en lengua náhuatl, está ubicado en la porción oriental de la Faja Volcánica Transmexicana. Su cima sirve como punto limítrofe entre los estados de Veracruz y Puebla. Existen reportes de actividad histórica del Pico de Orizaba; la última actividad importante ocurrió en el año de 1687 (Mooser, et al., 1958), aunque hay reportes de erupciones menores en tiempos más recientes (De-la Cruz y Carrasco-Núñez, 2002). Existen escasas señales de actividad moderna como exhalaciones débiles de SO2 y depósitos de azufre en las paredes del crater (Waitz, 1910-1911), por lo que se considera como un volcán activo en estado de quietud. El edifico actual tiene un cráter central con forma ovalada con un diámetro de 500x400 m y paredes verticales de 300 m de profundidad. Su parte norte está cubierta por un glaciar (Heine, 1988). El cono tiene una forma simétrica con pendientes pronunciadas que alcanzan los 40°. El volcán tiene un desnivel con respecto a la Cuenca de Serdán-Oriental al occidental de 2 900 m y de 4 300 con respecto a la Planicie Costera del Golfo al oriente (Carrasco-Núñez, 2000)

    Foreign Experience of Applying the Principle of "Pump or Pay" in the Field of Pipeline Transportation

    No full text
    This article reveals the practice of "ship or pay" principle in the US, Canada and Europe. The authors analyze the practice of concluding contracts for oil and petroleum products transportation, procedures, terms and conditions stipulated in the contract. The "take or pay" principle is a common practice in developed countries like the US, Canada and the UK. The specific feature of the United States is that the pipelines are not built only for one shipper, but rather for all market, which is caused the "open season" tradition. In Canada, "take or pay" principle applies to cover the capital costs of the carrier. The main reasons for usage of terms "take or pay" are to minimize risks of the carrier, building or expanding his own pipeline network, by guaranteeing shipper's financial benefits after the putting pipeline into operation. "Take or pay" contracts cover the carrier's obligation to provide agreed minimum amount of petroleum to the consignor within a certain period. In turn, the shipper is obliged to accept the minimum amount of petroleum and pay, regardless of the fact of acceptance of oil. "Take or pay" principle is a kind of risk-sharing mechanism, which allows to shift the risks of non-fulfillment of the contract to the shipper. Besides, the "take or pay" principle can be indirect guarantee in the context of project financing, and therefore, financing. The article emphasizes the main advantages of the application of this principle and opportunities for its use in Russia
    corecore