37 research outputs found

    A model for homeopathic remedy effects: low dose nanoparticles, allostatic cross-adaptation, and time-dependent sensitization in a complex adaptive system

    Get PDF
    BACKGROUND: This paper proposes a novel model for homeopathic remedy action on living systems. Research indicates that homeopathic remedies (a) contain measurable source and silica nanoparticles heterogeneously dispersed in colloidal solution; (b) act by modulating biological function of the allostatic stress response network (c) evoke biphasic actions on living systems via organism-dependent adaptive and endogenously amplified effects; (d) improve systemic resilience. DISCUSSION: The proposed active components of homeopathic remedies are nanoparticles of source substance in water-based colloidal solution, not bulk-form drugs. Nanoparticles have unique biological and physico-chemical properties, including increased catalytic reactivity, protein and DNA adsorption, bioavailability, dose-sparing, electromagnetic, and quantum effects different from bulk-form materials. Trituration and/or liquid succussions during classical remedy preparation create “top-down” nanostructures. Plants can biosynthesize remedy-templated silica nanostructures. Nanoparticles stimulate hormesis, a beneficial low-dose adaptive response. Homeopathic remedies prescribed in low doses spaced intermittently over time act as biological signals that stimulate the organism’s allostatic biological stress response network, evoking nonlinear modulatory, self-organizing change. Potential mechanisms include time-dependent sensitization (TDS), a type of adaptive plasticity/metaplasticity involving progressive amplification of host responses, which reverse direction and oscillate at physiological limits. To mobilize hormesis and TDS, the remedy must be appraised as a salient, but low level, novel threat, stressor, or homeostatic disruption for the whole organism. Silica nanoparticles adsorb remedy source and amplify effects. Properly-timed remedy dosing elicits disease-primed compensatory reversal in direction of maladaptive dynamics of the allostatic network, thus promoting resilience and recovery from disease. SUMMARY: Homeopathic remedies are proposed as source nanoparticles that mobilize hormesis and time-dependent sensitization via non-pharmacological effects on specific biological adaptive and amplification mechanisms. The nanoparticle nature of remedies would distinguish them from conventional bulk drugs in structure, morphology, and functional properties. Outcomes would depend upon the ability of the organism to respond to the remedy as a novel stressor or heterotypic biological threat, initiating reversals of cumulative, cross-adapted biological maladaptations underlying disease in the allostatic stress response network. Systemic resilience would improve. This model provides a foundation for theory-driven research on the role of nanomaterials in living systems, mechanisms of homeopathic remedy actions and translational uses in nanomedicine

    The binary system UF4?UCl4

    No full text

    Measuring Single-Walled Carbon Nanotube Length Distributions from Diffusional Trajectories

    No full text
    A new method is demonstrated for measuring the length distributions of dispersed single-walled carbon nanotube (SWCNT) samples by analyzing diffusional motions of many individual nanotubes in parallel. In this method, termed “length analysis by nanotube diffusion” (LAND), video sequences of near-IR fluorescence microscope images showing many semiconducting SWCNTs are recorded and processed by custom image analysis software. This processing locates the individual nanotubes, tracks their translational trajectories, computes the corresponding diffusion coefficients, and converts those values to nanotube lengths. The deduced length values are then compiled into a histogram of lengths present in the sample. By using specific excitation wavelengths and emission filters, this analysis is performed on selected (<i>n</i>,<i>m</i>) structural species. The new LAND method has been found to give distributions in very good agreement with those obtained by conventional AFM analysis of the same samples. Because it is fluorescence-based, LAND monitors only semiconducting, relatively pristine SWCNTs. However, it is less sensitive to artifacts from impurities and bundled nanotubes than AFM or light scattering methods. In addition, samples can be analyzed with less time and operator attention than by AFM. LAND is a promising alternative method for characterizing length distributions of SWCNTs in liquid suspension

    Phase Behavior of DNA-Based Dispersions containing Carbon Nanotubes: Effects of Added Polymers and Ionic Strength on Excluded Volume

    No full text
    Ordered phases containing single-walled carbon nanotubes (SWNTs) are essential to exploit the highly anisotropic properties of such nanoparticles. Knowledge of the phase behavior for the above dispersions is therefore needed. Unfortunately, the processing of nanotubes at high concentration remains experimentally challenging. To date, solvent evaporation and ultracentrifugation procedures have been used to increase the volume fraction of carbon nanotubes and obtain (pseudo)-binary phase diagrams. We present here a novel phase separation strategy, allowing investigations of the phase behavior of concentrated dispersions of DNA-stabilized carbon nanotubes. This strategy is based on the osmotic compression due to added polymers such as sodium dextransulfate (SDxS) or polyethylene glycol (PEG) and on the control of the ionic strength. The phase behavior of the compressed DNA/SWNTs complexes is analyzed and discussed. It is observed that added polymers induce the separation of a SWNT-rich anisotropic phase in equilibrium with an isotropic polymer-rich one. The volume fraction of the ordered phase can be controlled by the concentration of added polymer, making this strategy efficient for investigations of concentrated nanotube dispersions and developments of novel materials based on the anisotropic phases containing such nanoparticles
    corecore