25 research outputs found
SPIN: Simulated Poisoning and Inversion Network for Federated Learning-Based 6G Vehicular Networks
The applications concerning vehicular networks benefit from the vision of
beyond 5G and 6G technologies such as ultra-dense network topologies, low
latency, and high data rates. Vehicular networks have always faced data privacy
preservation concerns, which lead to the advent of distributed learning
techniques such as federated learning. Although federated learning has solved
data privacy preservation issues to some extent, the technique is quite
vulnerable to model inversion and model poisoning attacks. We assume that the
design of defense mechanism and attacks are two sides of the same coin.
Designing a method to reduce vulnerability requires the attack to be effective
and challenging with real-world implications. In this work, we propose
simulated poisoning and inversion network (SPIN) that leverages the
optimization approach for reconstructing data from a differential model trained
by a vehicular node and intercepted when transmitted to roadside unit (RSU). We
then train a generative adversarial network (GAN) to improve the generation of
data with each passing round and global update from the RSU, accordingly.
Evaluation results show the qualitative and quantitative effectiveness of the
proposed approach. The attack initiated by SPIN can reduce up to 22% accuracy
on publicly available datasets while just using a single attacker. We assume
that revealing the simulation of such attacks would help us find its defense
mechanism in an effective manner.Comment: 6 pages, 4 figure
Face-PAST: Facial Pose Awareness and Style Transfer Networks
Facial style transfer has been quite popular among researchers due to the
rise of emerging technologies such as eXtended Reality (XR), Metaverse, and
Non-Fungible Tokens (NFTs). Furthermore, StyleGAN methods along with
transfer-learning strategies have reduced the problem of limited data to some
extent. However, most of the StyleGAN methods overfit the styles while adding
artifacts to facial images. In this paper, we propose a facial pose awareness
and style transfer (Face-PAST) network that preserves facial details and
structures while generating high-quality stylized images. Dual StyleGAN
inspires our work, but in contrast, our work uses a pre-trained style
generation network in an external style pass with a residual modulation block
instead of a transform coding block. Furthermore, we use the gated mapping unit
and facial structure, identity, and segmentation losses to preserve the facial
structure and details. This enables us to train the network with a very limited
amount of data while generating high-quality stylized images. Our training
process adapts curriculum learning strategy to perform efficient and flexible
style mixing in the generative space. We perform extensive experiments to show
the superiority of Face-PAST in comparison to existing state-of-the-art
methods.Comment: 20 pages, 8 figures, 2 table
Stacked Autoencoder and Meta-Learning based Heterogeneous Domain Adaptation for Human Activity Recognition
The field of human activity recognition (HAR) using machine learning approaches has gained a lot of interest in the research community due to its empowerment of automation and autonomous systems in industries and homes with respect to the given context and due to the increasing number of smart wearable devices. However, it is challenging to achieve a considerable accuracy for recognizing actions with diverse set of wearable devices due to their variance in feature spaces, sampling rate, units, sensor modalities and so forth. Furthermore, collecting annotated data has always been a serious issue in the machine learning community. Domain adaptation is a field that helps to cope with the issue by training on the source domain and labeling the samples in the target domain, however, due to the aforementioned variances (heterogeneity) in wearable sensor data, the action recognition accuracy remains on the lower side. Existing studies try to make the target domain feature space compliant with the source domain to improve the results, but it assumes that the system has a prior knowledge of the feature space of the target domain, which does not reflect real-world implication. In this regard, we propose stacked autoencoder and meta-learning based heterogeneous domain adaptation (SAM- HDD) network. The stacked autoencoder part is trained on the source domain feature space to extract the latent representation and train the employed classifiers, accordingly. The classification probabilities from the classifiers are trained with meta-learner to further improve the recognition performance. The data from tar- get domain undergoes the encoding layers of the trained stacked autoencoders to extract the latent representations, followed by the classification of label from the trained classifiers and meta- learner. The results show that the proposed approach is efficient in terms of accuracy score and achieves best results among the existing works, respectivel
AI and 6G Into the Metaverse: Fundamentals, Challenges and Future Research Trends
Since Facebook was renamed Meta, a lot of attention, debate, and exploration have intensified about what the Metaverse is, how it works, and the possible ways to exploit it. It is anticipated that Metaverse will be a continuum of rapidly emerging technologies, usecases, capabilities, and experiences that will make it up for the next evolution of the Internet. Several researchers have already surveyed the literature on artificial intelligence (AI) and wireless communications in realizing the Metaverse. However, due to the rapid emergence and continuous evolution of technologies, there is a need for a comprehensive and in-depth survey of the role of AI, 6G, and the nexus of both in realizing the immersive experiences of Metaverse. Therefore, in this survey, we first introduce the background and ongoing progress in augmented reality (AR), virtual reality (VR), mixed reality (MR) and spatial computing, followed by the technical aspects of AI and 6G. Then, we survey the role of AI in the Metaverse by reviewing the state-of-the-art in deep learning, computer vision, and Edge AI to extract the requirements of 6G in Metaverse. Next, we investigate the promising services of B5G/6G towards Metaverse, followed by identifying the role of AI in 6G networks and 6G networks for AI in support of Metaverse applications, and the need for sustainability in Metaverse. Finally, we enlist the existing and potential applications, usecases, and projects to highlight the importance of progress in the Metaverse. Moreover, in order to provide potential research directions to researchers, we underline the challenges, research gaps, and lessons learned identified from the literature review of the aforementioned technologies
AI-enabled privacy-preservation phrase with multi-keyword ranked searching for sustainable edge-cloud networks in the era of industrial IoT
Abstract: Please refer to full text to view abstrac
Towards soft real-time fault diagnosis for edge devices in industrial IoT using deep domain adaptation training strategy
Abstract: Artificial intelligence and industrial internet of things (IIoT) have been rejuvenating the fault diagnosis systems in Industry 4.0 for avoiding major financial losses caused by faults in rotating machines. Meanwhile, the diagnostic systems are provided with a number of sensory inputs that introduce variations in input space which causes difficulty for the algorithms in edge devices. This issue is generally dealt with bi-view cross-domain learning approach. We propose a soft real-time fault diagnosis system for edge devices using domain adaptation training strategy. The investigation is carried out using deep learning models that can learn representations irrespective of input dimensions. A comparative analysis is performed on a publicly available dataset to evaluate the efficacy of the proposed approach which achieved accuracy of 88.08%. The experimental results show that our method using long short-term memory network achieves the best results for the bearing fault detection in an IIoT environmental setting. © 2021 Elsevier Inc. All rights reserve
Toward Energy-Efficient Distributed Federated Learning for 6G Networks
The provision of communication services via portable and mobile devices, such as aerial base stations, is a crucial concept to be realized in 5G/6G
networks. Conventionally, IoT/edge devices need to transmit data directly to the base station for training the model using machine learning techniques.
The data transmission introduces privacy issues that might lead to security concerns and monetary losses. Recently, federated learning was proposed to
partially solve privacy issues via model sharing with the base station. However, the centralized nature of federated learning only allows the devices within the vicinity of base stations to share trained models. Furthermore, the long-range communication compels the devices to increase transmission power, which raises energy efficiency concerns. In this work, we propose the distributed federated learning (DBFL) framework that overcomes the connectivity and energy efficiency issues for distant devices. The DBFL framework is compatible with mobile edge computing architecture that connects the devices in a distributed manner using clustering protocols. Experimental results show that the framework increases the classification performance by 7.4 percent in comparison to conventional federated learning while reducing the energy consumption
ChatGPT Needs SPADE (Sustainability, PrivAcy, Digital divide, and Ethics) Evaluation: A Review
ChatGPT is another large language model (LLM) inline but due to its
performance and ability to converse effectively, it has gained a huge
popularity amongst research as well as industrial community. Recently, many
studies have been published to show the effectiveness, efficiency, integration,
and sentiments of chatGPT and other LLMs. In contrast, this study focuses on
the important aspects that are mostly overlooked, i.e. sustainability, privacy,
digital divide, and ethics and suggests that not only chatGPT but every
subsequent entry in the category of conversational bots should undergo
Sustainability, PrivAcy, Digital divide, and Ethics (SPADE) evaluation. This
paper discusses in detail about the issues and concerns raised over chatGPT in
line with aforementioned characteristics. We support our hypothesis by some
preliminary data collection and visualizations along with hypothesized facts.
We also suggest mitigations and recommendations for each of the concerns.
Furthermore, we also suggest some policies and recommendations for AI policy
act, if designed by the governments.Comment: 15 pages, 5 figures, 4 table