4,511 research outputs found
The IR-Completion of Gravity: What happens at Hubble Scales?
We have recently proposed an "Ultra-Strong" version of the Equivalence
Principle (EP) that is not satisfied by standard semiclassical gravity. In the
theory that we are conjecturing, the vacuum expectation value of the (bare)
energy momentum tensor is exactly the same as in flat space: quartically
divergent with the cut-off and with no spacetime dependent (subleading) ter ms.
The presence of such terms seems in fact related to some known difficulties,
such as the black hole information loss and the cosmological constant problem.
Since the terms that we want to get rid of are subleading in the high-momentum
expansion, we attempt to explore the conjectured theory by "IR-completing" GR.
We consider a scalar field in a flat FRW Universe and isolate the first
IR-correction to its Fourier modes operators that kills the quadratic (next to
leading) time dependent divergence of the stress energy tensor VEV. Analogously
to other modifications of field operators that have been proposed in the
literature (typically in the UV), the present approach seems to suggest a
breakdown (here, in the IR, at large distances) of the metric manifold
description. We show that corrections to GR are in fact very tiny, become
effective at distances comparable to the inverse curvature and do not contain
any adjustable parameter. Finally, we derive some cosmological implications. By
studying the consistency of the canonical commutation relations, we infer a
correction to the distance between two comoving observers, which grows as the
scale factor only when small compared to the Hubble length, but gets relevant
corrections otherwise. The corrections to cosmological distance measures are
also calculable and, for a spatially flat matter dominated Universe, go in the
direction of an effective positive acceleration.Comment: 27 pages, 2 figures. Final version, references adde
Enhanced Peculiar Velocities in Brane-Induced Gravity
The mounting evidence for anomalously large peculiar velocities in our
Universe presents a challenge for the LCDM paradigm. The recent estimates of
the large scale bulk flow by Watkins et al. are inconsistent at the nearly 3
sigma level with LCDM predictions. Meanwhile, Lee and Komatsu have recently
estimated that the occurrence of high-velocity merging systems such as the
Bullet Cluster (1E0657-57) is unlikely at a 6.5-5.8 sigma level, with an
estimated probability between 3.3x10^{-11} and 3.6x10^{-9} in LCDM cosmology.
We show that these anomalies are alleviated in a broad class of
infrared-modifed gravity theories, called brane-induced gravity, in which
gravity becomes higher-dimensional at ultra large distances. These theories
include additional scalar forces that enhance gravitational attraction and
therefore speed up structure formation at late times and on sufficiently large
scales. The peculiar velocities are enhanced by 24-34% compared to standard
gravity, with the maximal enhancement nearly consistent at the 2 sigma level
with bulk flow observations. The occurrence of the Bullet Cluster in these
theories is 10^4 times more probable than in LCDM cosmology.Comment: 15 pages, 6 figures. v2: added reference
Moir\'e patterns in quantum images
We observed moir\'e fringes in spatial quantum correlations between twin
photons generated by parametric down-conversion. Spatially periodic structures
were nonlocally superposed giving rise to beat frequencies typical of moir\'e
patterns. This result brings interesting perspectives regarding metrological
applications of such a quantum optical setup.Comment: 4 pages, 5 figure
Metric Expansion from Microscopic Dynamics in an Inhomogeneous Universe
Theories with ingredients like the Higgs mechanism, gravitons, and inflaton
fields rejuvenate the idea that relativistic kinematics is dynamically
emergent. Eternal inflation treats the Hubble constant H as depending on
location. Microscopic dynamics implies that H is over much smaller lengths than
pocket universes to be understood as a local space reproduction rate. We
illustrate this via discussing that even exponential inflation in TeV-gravity
is slow on the relevant time scale. In our on small scales inhomogeneous
cosmos, a reproduction rate H depends on position. We therefore discuss
Einstein-Straus vacuoles and a Lindquist-Wheeler like lattice to connect the
local rate properly with the scaling of an expanding cosmos. Consistency allows
H to locally depend on Weyl curvature similar to vacuum polarization. We derive
a proportionality constant known from Kepler's third law and discuss the
implications for the finiteness of the cosmological constant.Comment: 23 pages, no figure
String production at the level of effective field theory
Pair creation of strings in time-dependent backgrounds is studied from an
effective field theory viewpoint, and some possible cosmological applications
are discussed. Simple estimates suggest that excited strings may have played a
significant role in preheating, if the string tension as measured in
four-dimensional Einstein frame falls a couple of orders of magnitude below the
four-dimensional Planck scale.Comment: 20 pages, latex2e. v2: a reference adde
How to measure redshift-space distortions without sample variance
We show how to use multiple tracers of large-scale density with different
biases to measure the redshift-space distortion parameter
beta=f/b=(dlnD/dlna)/b (where D is the growth rate and a the expansion factor),
to a much better precision than one could achieve with a single tracer, to an
arbitrary precision in the low noise limit. In combination with the power
spectrum of the tracers this allows a much more precise measurement of the
bias-free velocity divergence power spectrum, f^2 P_m - in fact, in the low
noise limit f^2 P_m can be measured as well as would be possible if velocity
divergence was observed directly, with rms improvement factor ~[5.2(beta^2+2
beta+2)/beta^2]^0.5 (e.g., ~10 times better than a single tracer for beta=0.4).
This would allow a high precision determination of f D as a function of
redshift with an error as low as 0.1%. We find up to two orders of magnitude
improvement in Figure of Merit for the Dark Energy equation of state relative
to Stage II, a factor of several better than other proposed Stage IV Dark
Energy surveys. The ratio b_2/b_1 will be determined with an even greater
precision than beta, producing, when measured as a function of scale, an
exquisitely sensitive probe of the onset of non-linear bias. We also extend in
more detail previous work on the use of the same technique to measure
non-Gaussianity. Currently planned redshift surveys are typically designed with
signal to noise of unity on scales of interest, and are not optimized for this
technique. Our results suggest that this strategy may need to be revisited as
there are large gains to be achieved from surveys with higher number densities
of galaxies.Comment: 22 pages, 13 figure
Valorization of wine‐making by‐products’ extracts in cosmetics
The increased demand for conscious, sustainable and beneficial products by the consumers has pushed researchers from both industries and universities worldwide to search for smart strategies capable of reducing the environmental footprint, especially the ones connected with industrial wastes. Among various by-products, generally considered as waste, those obtained by winemaking industries have attracted the attention of a wide variety of companies, other than the vineries. In particular, grape pomaces are considered of interest due to their high content in bioactive molecules, especially phenolic compounds. The latter can be recovered from grape pomace and used as active ingredients in easily marketable cosmetic products. Indeed, phenolic compounds are well known for their remarkable beneficial properties at the skin level, such as antioxidant, antiaging, anti-hyperpigmentation and photoprotective effects. The exploitation of the bioactives contained in grape pomaces to obtain high value cosmetics may support the growing of innovative start-ups and expand the value chain of grapes. This review aims to describe the strategies for recovery of polyphenols from grape pomace, to highlight the beneficial potential of these extracts, both in vitro and in vivo, and their potential utilization as active ingredients in cosmetic products
A Preliminary study of removal of some heavy metals from aqueous medium by a mesoporous hydroxysodalite zeolite prepared from basalt rich in calc-plagioclaseby alkali activation
This work presents an exploration of the use of hydroxysodalite zeolite prepared from basalt rich in calc-plagioclaseby alkali activation for removal of some heavy metals from aqueous medium. The preliminary results of batch and column experiments indicated a quantitative and fast removal of the three investigated ions, Cu2+, Pb2+ and Zn2+ from aqueous solutions. The data from the batch experiments and the column experiments jointly support the notion that hydroxysodalite zeolite prepared from basalt rich in calc-plagioclase is an efficient adsorbent for the investigated heavy metals. Almost quantitative removal of the ions was achieved within a period of 15 min of exposure of the solution to the adsorbent in batch experiments and through passing a small column filled with the adsorbent. The highest removal efficiency by the zeolite prepared from basalt rich in calc-plagioclase of the three tested heavy metal Cu2+, Pb2+ and Zn2+ were 99.98% ,99.76% and 99.93 % respectively. Keywords: hydroxysodalite zeolite, basalt utilization, heavy ions removal, pollution remediation DOI: 10.7176/CMR/12-7-09 Publication date:November 30th 2020
Scale Invariance without Inflation?
We propose a new alternative mechanism to seed a scale invariant spectrum of
primordial density perturbations that does not rely on inflation. In our
scenario, a perfect fluid dominates the early stages of an expanding,
non-inflating universe. Because the speed of sound of the fluid decays,
perturbations are left frozen behind the sound horizon, with a spectral index
that depends on the fluid equation of state. We explore here a toy model that
realizes this idea. Although the model can explain an adiabatic, Gaussian,
scale invariant spectrum of primordial perturbations, it turns out that in its
simplest form it cannot account for the observed amplitude of the primordial
density perturbations.Comment: 6 two-column pages, 1 figure. Uses RevTeX4. v2: References added and
number of required e-folds refine
Adiabatic and entropy perturbations propagation in a bouncing Universe
By studying some bouncing universe models dominated by a specific class of
hydrodynamical fluids, we show that the primordial cosmological perturbations
may propagate smoothly through a general relativistic bounce. We also find that
the purely adiabatic modes, although almost always fruitfully investigated in
all other contexts in cosmology, are meaningless in the bounce or null energy
condition (NEC) violation cases since the entropy modes can never be neglected
in these situations: the adiabatic modes exhibit a fake divergence that is
compensated in the total Bardeen gravitational potential by inclusion of the
entropy perturbations.Comment: 25 pages, no figure, LaTe
- …