67 research outputs found

    Current Research of the Renin-Angiotensin System Effect on Stem Cell Therapy

    Get PDF
    The renin-angiotensin system (RAS) is a chief regulator of the cardiovascular system and body fluid homeostasis. Stem/progenitor cell therapy has pointed towards a novel tool for medical and therapeutic intervention. In addition to the physiological and pathological role of the RAS and its pharmacological inhibitors, the proliferation, differentiation in stem cells is mediated through various cell-signalling pathways. This book chapter reviews the new role of RAS components, distinct from other common roles by considering its regulating impact on the several signalling pathways involved in different body tissues, as well as in stem cell therapy

    The prophylactic effect of probiotic enterococcus lactis IW5 against different human cancel cells

    Get PDF
    Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, MCF-7, AGS, HT-29, and Caco-2. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications

    Novel water-soluble polyurethane nanomicelles for cancer chemotherapy: physicochemical characterization and cellular activities

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Efficient delivery of anticancer chemotherapies such as paclitaxel (PTX) can improve treatment strategy in a variety of tumors such as breast and ovarian cancers. Accordingly, researches on polymeric nanomicelles continue to find suitable delivery systems. However, due to biocompatibility concerns, a few micellar nanoformulations have exquisitely been translated into clinical uses. Here, we report the synthesis of novel water-soluble nanomicelles using bioactive polyurethane (PU) polymer and efficient delivery of PTX in the human breast cancer MCF-7 cells.</p> <p>Results</p> <p>The amphiphilic polyurethane was prepared through formation of urethane bounds between hydroxyl groups in poly (tetramethylene ether) glycol (PTMEG) and dimethylol propionic acid with isocyanate groups in toluene diisocyanate (TDI). The free isocyanate groups were blocked with phenol, while the free carboxyl groups of dimethylol propionic acid were reacted with triethylamine to attain ionic centers in the polymer backbone. These hydrophobic PTMEG blocks displayed self-assembly forming polymeric nanomicelles in water. The PTX loaded PU nanomicelles showed suitable physical stability, negative zeta potential charge (-43) and high loading efficiency (80%) with low level of critical micelle concentration (CMC). In vitro drug release profile showed a faster rate of drug liberation at pH 5.4 as compared to that of pH 7.4, implying involvement of a pH-sensitive mechanism for drug release from the nanomicelles. The kinetic of release exquisitely obeyed the Higuchi model, confirming involvement of diffusion and somewhat erosion at pH 5.4. These nanomicelles significantly inhibited the growth and proliferation of the human breast cancer MCF-7 cells, leading them to apoptosis. The real time RT-PCR analysis confirmed the activation of apoptosis as result of liberation of cytochrome c in the cells treated with the PTX loaded PU nanomicelles. The comet assay analysis showed somewhat DNA fragmentation in the treated cells.</p> <p>Conclusions</p> <p>Based upon these findings, we propose that the bioactive waterborne polyurethane nanomicelles can be used as an effective nanocarrier for delivery of anticancer chemotherapies such as paclitaxel.</p

    ApInAPDB: a database of apoptosis-inducing anticancer peptides

    Get PDF
    ApInAPDB (Apoptosis-Inducing Anticancer Peptides Database) consists of 818 apoptosis-inducing anticancer peptides which are manually collected from research articles. The database provides scholars with peptide related information such as function, binding target and affinity, IC50 and etc. In addition, GRAVY (grand average of hydropathy), net charge at pH 7, hydrophobicity and other physicochemical properties are calculated and presented. Another category of information are structural information includes 3D modeling, secondary structure prediction and descriptors for QSAR (quantitative structure–activity relationship) modeling. In order to facilitate the browsing process, three types of user-friendly searching tools are provided: top categories browser, simple search and advanced search. Overall ApInAPDB as the first database presenting apoptosis-inducing anticancer peptides can be useful in the field of peptide design and especially cancer therapy. Researchers can freely access the database at http://bioinf.modares.ac.ir/software/ApInAPDB/

    Molecular Identification and Probiotic Potential Characterization of Lactic Acid Bacteria Isolated from Human Vaginal Microbiota

    Get PDF
    Purpose: The increased demand for probiotics because of their health purposes provides the context for this study, which involves the molecular identification of lactic acid bacteria (LAB) obtained from the vaginal microbiota of healthy fertile women. The isolates were subjected for examination to prove their probiotic potential. In particular, the isolates were subjected to various tests, including acid/bile tolerance, antimicrobial activity, antibiotic susceptibility, Gram staining, and catalase enzyme activity assessment. Methods: Several methods were utilized for the molecular identification of the isolates, including ARDRA, (GTG)5-PCR fingerprinting, and the PCR sequencing of 16S-rDNA amplified fragments. Disc diffusion and well diffusion methods were used to assess antibiotic susceptibility and antibacterial activity of isolates. Tolerance to acid and bile was performed at pH 2.5 and 0.3% bile oxgall. Results: A total of 45 isolates of 88 separate organisms was selected. All of the isolates demonstrated an antibacterial effect on the exploited indicator microorganisms. All selected strains also maintained their viability at low-pH and high-bile salt conditions and exhibited abroad variation in their survival. Only the Enterococcus avium strain showed resistance to all 9 tested antibiotics. Based on the molecular identification and clustering, the 45 isolated bacteria were classified into three major groups of LAB: Enterococcus, Lactobacillus and Lactococcus. Conclusion: LAB are microorganisms that have a particularly important function in maintaining the health of the vaginal and gastrointestinal tract and in protecting it from infection by other pathogenic organisms. The isolates found to be a promising probiotic candidate by showed desirable characteristics. Therefore, strain DL3 can be used as natural food preservative with some more potential investigations

    The prophylactic effect of Acetobacter syzygii probiotic species against squamous cell carcinoma

    Get PDF
    Background. Squamous cell carcinoma is a prevalent carcinoma of the oral cavity. Recently anti-proliferative effect of probiotics has been considered and assessed against different cancers. The aim of this study was to evaluate the cytotoxicity of Acetobacter syzygii strain supernatant on KB human oral cancer cell line and KDR human epithelial normal cell line. Methods. The cytotoxicity assessments were performed through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as well as through qualitative (4',6-diamidino-2-phenylindole staining) and quantitative (flow cytometry assessments using the BD Biosciences Annexin V-FITC Kit) evaluations of apoptosis. Results. A. syzygii secretions exhibited significant cytotoxicity against KB cancer cell lines similar to cisplatin (75.7% apoptosis) while the rate of apoptosis in KDR normal cells was only 9.36%. The prophylactic effects of Lactobacillus acidophilus (PTCC 1643), as a reference bacterium, was similar to A. syzygii, indicating beneficial effects of useful bacteria on prevention of oral diseases. Conclusion. The anticancer bioactivity of A. syzygii strain secretions depends on the induction of apoptosis in KB cancer cells. However, several investigations should be conducted to precisely determine effective compounds to be used as anticancer therapeutics in the future

    A newly isolated probiotic Enterococcus faecalis strain from vagina microbiota enhances apoptosis of human cancer cells

    Get PDF
    Aims: This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract. Methods and Results: The Enterococcus faecalis strain was originally isolated from the vaginal microbiota of Iranian women and was molecularly identified using 16SrDNA gene sequencing. Some biochemical methodologies were preliminarily used to characterize the probiotic potential of Ent. faecalis, including antibiotic susceptibility, antimicrobial activity, as well as acid and bile resistance. The bio-therapeutic effects of this strain's secreted metabolites on four human cancer cell lines (AGS, HeLa, MCF-7 and HT-29) and one normal cell line (HUVEC) were evaluated by cytotoxicity assay and apoptosis scrutiny. The characterization results demonstrated into the isolated bacteria strain revealed probiotic properties, such as antibiotic susceptibility, antimicrobial activity and resistance under conditions similar to those in the gastrointestinal tract. Results of bio-therapeutic efficacy assessments illustrated acceptable apoptotic effects on four human cancer cell lines and negligible side effects on assayed normal cell line. Our findings revealed that the apoptotic effect of secreted metabolites mainly depended on proteins secreted by Ent. faecalis on different cancer cells. These proteins can induce the apoptosis of cancer cells. Conclusion: The metabolites produced by this vaginal Ent. faecalis strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. Accordingly, the physicochemical, structural and functional properties of the secreted anticancer substances should be further investigated before using them as anticancer therapeutics. Significance and Impact of the Study: This study aim to screen total bacterial secreted metabolites as a wealthy source to find the new active compounds to introduce as anticancer therapeutics in the future

    Ferroptosis as a Potential Cell Death Mechanism Against Cisplatin-Resistant Lung Cancer Cell Line

    Get PDF
    Purpose: Drug resistance is a challenging issue in cancer chemotherapy. Cell death induction is one of the main strategies to overcome chemotherapy resistance. Notably, ferroptosis has been considered a critical cell death mechanism in recent years. Accordingly, in this study, the different cell death strategies focused on ferroptosis have been utilized to overcome cisplatin resistance in an in vitro lung cancer model. Methods: The physiological functions of Akt1 and GPX4, as critical targets for ferroptosis and apoptosis induction, were suppressed by siRNA or antagonistic agents in resistant A549 cells. Afterward, the interventions’ impacts on cell viability and reactive oxygen species (ROS) amount were analyzed by flow cytometry. Moreover, the alteration in the relevant gene and protein expression levels were quantified using Real-time PCR and western blot methods. Results: The result showed that the treatment with Akt1 siRNA reversed the cisplatin resistance in the A549 cell line through the induction of apoptosis. Likewise, the combination treatment of the GPX4 siRNA or FIN56 as ferroptosis inducers alongside cisplatin elevated ROS’s cellular level, reduced the cellular antioxidant genes level and increased the cisplatin cytotoxic effect. Conclusion: In conclusion, our study indicated that ferroptosis induction can be considered a promising cell death strategy in cisplatin-resistant cancer cells

    PDE Modeling of a Microfluidic Thermal Process for Genetic Analysis Application

    Get PDF
    This paper details the infinite dimensional dynamics of a prototype microfluidic thermal process that is used for genetic analysis purposes. Highly effective infinite dimensional dynamics, in addition to collocated sensor and actuator architecture, require the development of a precise control framework to meet the very tight performance requirements of this system, which are not fully attainable through conventional lumped modeling and controller design approaches. The general partial differential equations describing the dynamics of the system are separated into steady-state and transient parts which are derived for a carefully chosen three-dimensional axisymmetric model. These equations are solved analytically, and the results are verified using an experimentally verified precise finite element method (FEM) model. The final combined result is a framework for designing a precise tracking controller applicable to the selected lab-on-a-chip device

    Prophylactic Role of Lactobacillus paracasei Exopolysaccharides on Colon Cancer Cells through Apoptosis Not Ferroptosis

    Get PDF
    Background: Nowadays despite conventional methods in colon cancer treatment, targeting vital molecular pathways and induction of various forms of cell death by safe probiotic components like exopolysaccharides (EPSs) are of great importance and are considered as potential therapeutic agents. This study aimed to investigate the inhibitory effect of the EPS of L. paracasei on different colon cancer cell lines (SW-480, HT-29, and HCT-116). Methods: For this purpose, several cellular and molecular experiments including MTS assay, DAPI staining, Annexin V/PI assay, quantitative real-time PCR (qPCR) and some important ferroptosis-related assays were performed. Results: Based on the findings, L. paracasei EPS can induce apoptosis confirmed by all apoptosis related assays and could not act through ferroptosis pathways. L. paracasei EPS could hinder the Akt1, mTOR, and Jak-1 mRNAs, and induces apoptosis through down-regulation of the antiapoptotic gene (Bcl-2), up-regulation of pro-apoptotic genes (BAX, caspase-3, 8). Conclusion: The exploited EPS of an indigenous probiotic strain with anticancer potential with low/insignificant cytotoxicity to normal cells is proposed for future applications in molecular targeted therapy of colon cancer treatment. Furthermore, in vivo and clinical trials should be performed to evaluate the applicability of this component besides conventional methods to increase the survival rate of colon cancer patients
    corecore