2 research outputs found
Development of a Step Counting Algorithm Using the Ambulatory Tibia Load Analysis System for Tibia Fracture Patients
Introduction: Ambulation can be used to monitor the healing of lower extremity fractures. However, the ambulatory behavior of tibia fracture patients remains unknown due to an inability to continuously quantify ambulation outside of the clinic. The goal of this study was to design and validate an algorithm to assess ambulation in tibia fracture patients using the ambulatory tibial load analysis system during recovery, outside of the clinic. Methods Data were collected from a cyclic tester, 14 healthy volunteers performing a 2-min walk test on the treadmill, and 10 tibia fracture patients who wore the ambulatory tibial load analysis system during recovery. Results The algorithm accurately detected 2000/2000 steps from simulated ambulatory data. (see full text for full abstract
River export of nutrients and organic matter from the North Slope of Alaska to the Beaufort Sea
Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 50 (2014): 1823–1839, doi:10.1002/2013WR014722.While river-borne materials are recognized as important resources supporting coastal ecosystems around the world, estimates of river export from the North Slope of Alaska have been limited by a scarcity of water chemistry and river discharge data. This paper quantifies water, nutrient, and organic matter export from the three largest rivers (Sagavanirktok, Kuparuk, and Colville) that drain Alaska's North Slope and discusses the potential importance of river inputs for biological production in coastal waters of the Alaskan Beaufort Sea. Together these rivers export ∼297,000 metric tons of organic carbon and ∼18,000 metric tons of organic nitrogen each year. Annual fluxes of nitrate-N, ammonium-N, and soluble reactive phosphorus are approximately 1750, 200, and 140 metric tons per year, respectively. Constituent export from Alaska's North Slope is dominated by the Colville River. This is in part due to its larger size, but also because constituent yields are greater in the Colville watershed. River-supplied nitrogen may be more important to productivity along the Alaskan Beaufort Sea coast than previously thought. However, given the dominance of organic nitrogen export, the potential role of river-supplied nitrogen in support of primary production depends strongly on remineralization mechanisms. Although rivers draining the North Slope of Alaska make only a small contribution to overall river export from the pan-arctic watershed, comparisons with major arctic rivers reveal unique regional characteristics as well as remarkable similarities among different regions and scales. Such information is crucial for development of robust river export models that represent the arctic system as a whole.Funding for this project was
provided by a grant from the National
Science Foundation Office of Polar
Programs (NSF-OPP-0436118) as part
of the Arctic System Science (ARCSS)
Study of the Northern Alaska Coastal
System (SNACS) effort.2014-08-2