15 research outputs found

    Hypoxia, tissue factor and urokinase plasminogen activator receptor expression in cancer

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Contemporary Strategies in the Management of Hepatocellular Carcinoma

    No full text
    Liver transplantation is the treatment of choice for selected patients with hepatocellular carcinoma (HCC) on a background of chronic liver disease. Liver resection or locoregional ablative therapies may be indicated for patients with preserved synthetic function without significant portal hypertension. Milan criteria were introduced to select suitable patients for liver transplant with low risk of tumor recurrence and 5-year survival in excess of 70%. Currently the incidence of HCC is climbing rapidly and in a current climate of organ shortage has led to the re-evaluation of locoregional therapies and resectional surgery to manage the case load. The introduction of biological therapies has had a new dimension to care, adding to the complexities of multidisciplinary team working in the management of HCC. The aim of this paper is to give a brief overview of present day management strategies and decision making

    An in silico argument for mitochondrial microRNA as a determinant of primary non function in liver transplantation

    No full text
    Abstract Mitochondria have their own genomic, transcriptomic and proteomic machinery but are unable to be autonomous, needing both nuclear and mitochondrial genomes. The aim of this work was to use computational biology to explore the involvement of Mitochondrial microRNAs (MitomiRs) and their interactions with the mitochondrial proteome in a clinical model of primary non function (PNF) of the donor after cardiac death (DCD) liver. Archival array data on the differential expression of miRNA in DCD PNF was re-analyzed using a number of publically available computational algorithms. 10 MitomiRs were identified of importance in DCD PNF, 7 with predicted interaction of their seed sequence with the mitochondrial transcriptome that included both coding, and non coding areas of the hypervariability region 1 (HVR1) and control region. Considering miRNA regulation of the nuclear encoded mitochondrial proteome, 7 hypothetical small proteins were identified with homolog function that ranged from co-factor for formation of ATP Synthase, REDOX balance and an importin/exportin protein. In silico, unconventional seed interactions, both non canonical and alternative seed sites, appear to be of greater importance in MitomiR regulation of the mitochondrial genome. Additionally, a number of novel small proteins of relevance in transplantation have been identified which need further characterization

    Expression Levels of Three Key Genes CCNB1, CDC20, and CENPF in HCC Are Associated With Antitumor Immunity

    No full text
    INTRODUCTION: Hepatocellular carcinoma (HCC) is the most common primary liver cancer with a low 5-year survival rate. The heterogeneity of HCC makes monotherapy unlikely. The development of diagnostic programs and new treatments targeting common genetic events in the carcinogenic process are providing further insights into the management of HCC. The aim of this study was firstly to validate key genes that are involved in promoting HCC development and as biomarkers for early diagnosis and, secondly, to define their links with antitumor immunity including inhibitory checkpoints. METHODS: Multiple databases including Gene Expression Omnibus (GEO), Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan–Meier Plotter, UALCAN, and Oncomine were used for target gene screening and establishment of a co-expression network. Clinical data and RNAseq of 367 HCC patients were downloaded from the Cancer Genome Atlas (TCGA) database. The diagnostic and prognostic value of screened genes were tested by receiver operating characteristic (ROC) curve and correlation analysis. The links with the key genes in HCC and antitumor immunity were defined using both blood and liver tissue collected prospectively from HCC patients in our center. RESULTS: Upregulation of CCNB1, CDC20, and CENPF was commonly observed in HCC and are involved in the p53 signal pathway. The hepatic mRNA expression levels of these three genes were strongly associated with patients’ prognosis and expressed high value of area under the ROC curve (AUC). Further analysis revealed that these three genes were positively correlated with the gene expression levels of IFN-γ, TNF-α, and IL-17 in peripheral blood. In addition, the expression of CENPF showed positive correlation with the percentage of CD8(pos) T cells and negative correlation with the percentage of CD4(pos) T cells in the peripheral blood. In the HCC microenvironment, the transcript levels of these three genes and inhibitory checkpoint molecules including PD-1, CTLA-4, and TIM-3 were positively correlated. CONCLUSION: The upregulation of CCNB1, CDC20, and CENPF genes was a common event in hepatocarcinogenesis. Expression levels of CCNB1, CDC20, and CENPF showed potential for early diagnosis and prediction of prognosis in HCC patients. There is a close association between three genes and Th1/Th17 cytokines as well as the count of CD4(pos) and CD8(pos) T cells. The positive correlation between the three genes and inhibitory checkpoint genes, PD-1, CTLA-4, and TIM-3, indicates that these genes are linked with weakened antitumor immunity in HCC. Our findings may provide further insights into developing novel therapies for HCC

    The microRNA Expression Profile in Donation after Cardiac Death (DCD) Livers and Its Ability to Identify Primary Non Function

    No full text
    <div><p>Donation after cardiac death (DCD) livers are marginal organs for transplant and their use is associated with a higher risk of primary non function (PNF) or early graft dysfunction (EGD). The aim was to determine if microRNA (miRNA) was able to discriminate between DCD livers of varying clinical outcome. DCD groups were categorized as PNF retransplanted within a week (n=7), good functional outcome (n=7) peak aspartate transaminase (AST) ≤ 1000 IU/L and EGD (n=9) peak AST ≥ 2500 IU/L. miRNA was extracted from archival formalin fixed post-perfusion tru-cut liver biopsies. High throughput expression analysis was performed using miRNA arrays. Bioinformatics for expression data analysis was performed and validated with real time quantitative PCR (RT-qPCR). The function of miRNA of interest was investigated using computational biology prediction algorithms. From the array analysis 16 miRNAs were identified as significantly different (p<0.05). On RT-qPCR miR-155 and miR-940 had the highest expression across all three DCD clinical groups. Only one miRNA, miR-22, was validated with marginal significance, to have differential expression between the three groups (p=0.049). From computational biology miR-22 was predicted to affect signalling pathways that impact protein turnover, metabolism and apoptosis/cell cycle. In conclusion, microRNA expression patterns have a low diagnostic potential clinically in discriminating DCD liver quality and outcome.</p></div

    Heatmap of microRNA from the donation after cardiac death liver groups.

    No full text
    <p>microRNA (miRNA) was extracted from archival formalin fixed post-perfusion tru-cut donor liver biopsies taken from donation after cardiac death (DCD) livers of varying clinical outcome. DCD groups were categorized as primary non function (PNF) retransplanted within a week (n = 7), good functional outcome (n = 7) peak aspartate transaminase (AST) ≤ 1000 IU/L and early graft dysfunction (EGD) (n = 9) peak AST ≥ 2500 IU/L. The heatmap demonstrates miRNA differential expression between the three DCD liver groups of primary PNF, EGD and good (p<0.05). Columns of the heatmap represent the different individual DCD liver biopsies and the horizontal cladogram at the top of the heatmap demonstrates clustering of samples according to DCD group of PNF, EGD and good. Key in top corner illustrates color labelling of DCD groups in the horizontal cladogram. The rows of the heatmap represent different miRNAs and the vertical cladogram shows clustering of miRNA species within each DCD group. The vertical graded scale shows that white within the heatmap represents increased expression and black decreased expression of a given miRNA. As no microRNA species was strongly associated with a given DCD clinical group, there is no clear heatmap pattern to be seen.</p
    corecore