89 research outputs found
Unraveling the formation dynamics of metallic femtosecond laser induced periodic surface structures
Femtosecond laser surface processing (FLSP) is an emerging fabrication
technique to efficiently control the surface morphology of many types of
materials including metals. However, the theoretical understanding of the FLSP
formation dynamics is not a trivial task, since it involves the interaction of
various physical processes (electromagnetic, thermal, fluid dynamics) and
remains relatively unexplored. In this work, we tackle this problem and present
rigorous theoretical results relevant to low-fluence FLSP that accurately match
the outcomes of an experimental campaign focused on the formation dynamics of
laser induced periodic surface structures (LIPSS) on stainless steel. More
specifically, the topology and maximum depth of LIPSS trenches are
theoretically and experimentally investigated as a function of the number of
laser pulses. Moreover, precise LIPSS morphology measurements are performed
using atomic force microscopy (AFM). The proposed comprehensive simulation
study is based on two-temperature model (TTM) non-equilibrium thermal
simulations coupled with fluid dynamic computations to capture the melting
metal phase occurring during FLSP. Our rigorous simulation results are found to
be in excellent agreement with the AFM measurements. The presented theoretical
framework to model FLSP under low-fluence femtosecond laser pulses will be
beneficial to various emerging applications of LIPSS on metallic surfaces, such
as cooling high-powered laser diodes and controlling the thermal emission or
absorption of metals
Qualification of tumour mutational burden by targeted next-generation sequencing as a biomarker in hepatocellular carcinoma
Background & Aims: Tumour mutational burden (TMB) predicts improved response and survival to immunotherapy. In this pilot study, we optimized targeted next-generation sequencing (tNGS) to estimate TMB in hepatocellular carcinoma (HCC). Methods: We sequenced 48 non-paired samples (21 fresh-frozen [FF] and 27 paraffin-embedded [FFPE]), among which 11 FFPE samples were pretreated with uracil-DNA glycosylase (UDG). Thirty samples satisfied post-sequencing quality control. High/low TMB was defined by median number of mutations/Mb (Mut/Mb), across different minimum allele frequency (MAF) thresholds ( 650.05, 650.1 and 650.2). Results: Eligible patients (n\ua0=\ua029) were cirrhotic (84%) with TNM stage I-II HCC (75%). FFPE samples had higher TMB (median 958.39 vs 2.51 Mut/Mb, P\ua0\ua0T transitions at CpG sites (median 60.3% vs 9.1%, P\ua0=.002) compared to FF. UDG-treated samples had lower TMB (median 4019.92 vs 353 Mut/Mb, P\ua0=.041) and deamination counts (median 6393.5 vs 328.5, P\ua0=.041) vs untreated FFPE. At 0.2 MAF threshold with UDG treatment, median TMB was 5.48 (range 1.68-16.07) and did not correlate with salient pathologic features of HCC, including survival. Conclusion: While tNGS on fresh HCC samples appears to be the optimal source of tumour DNA, the low median TMB values observed may limit the role of TMB as a predictor of response to immunotherapy in HCC
Advances in the treatment of chronic myeloid leukemia
Although imatinib is firmly established as an effective therapy for newly diagnosed patients with chronic myeloid leukemia (CML), the field continues to advance on several fronts. In this minireview we cover recent results of second generation tyrosine kinase inhibitors in newly diagnosed patients, investigate the state of strategies to discontinue therapy and report on new small molecule inhibitors to tackle resistant disease, focusing on agents that target the T315I mutant of BCR-ABL. As a result of these advances, standard of care in frontline therapy has started to gravitate toward dasatinib and nilotinib, although more observation is needed to fully support this. Stopping therapy altogether remains a matter of clinical trials, and more must be learned about the mechanisms underlying the persistence of leukemic cells with treatment. However, there is good news for patients with the T315I mutation, as effective drugs such as ponatinib are on their way to regulatory approval. Despite these promising data, accelerated or blastic phase disease remains a challenge, possibly due to BCR-ABL-independent resistance
P-loop mutations and novel therapeutic approaches for imatinib failures in chronic myeloid leukemia
Imatinib was the first BCR-ABL-targeted agent approved for the treatment of patients with chronic myeloid leukemia (CML) and confers significant benefit for most patients; however, a substantial number of patients are either initially refractory or develop resistance. Point mutations within the ABL kinase domain of the BCR-ABL fusion protein are a major underlying cause of resistance. Of the known imatinib-resistant mutations, the most frequently occurring involve the ATP-binding loop (P-loop). In vitro evidence has suggested that these mutations are more oncogenic with respect to other mutations and wild type BCR-ABL. Dasatinib and nilotinib have been approved for second-line treatment of patients with CML who demonstrate resistance (or intolerance) to imatinib. Both agents have marked activity in patients resistant to imatinib; however, they have differential activity against certain mutations, including those of the P-loop. Data from clinical trials suggest that dasatinib may be more effective vs. nilotinib for treating patients harboring P-loop mutations. Other mutations that are differentially sensitive to the second-line tyrosine kinase inhibitors (TKIs) include F317L and F359I/V, which are more sensitive to nilotinib and dasatinib, respectively. P-loop status in patients with CML and the potency of TKIs against P-loop mutations are key determinants for prognosis and response to treatment. This communication reviews the clinical importance of P-loop mutations and the efficacy of the currently available TKIs against them
BCR-ABL1 mutation development during first-line treatment with dasatinib or imatinib for chronic myeloid leukemia in chronic phase
BCR-ABL1 mutations are a common, well-characterized mechanism of resistance to imatinib as first-line treatment of chronic myeloid leukemia in chronic phase (CML-CP). Less is known about mutation development during first-line treatment with dasatinib and nilotinib, despite increased use because of higher response rates compared with imatinib. Retrospective analyses were conducted to characterize mutation development in patients with newly diagnosed CML-CP treated with dasatinib (n=259) or imatinib (n=260) in DASISION (Dasatinib versus Imatinib Study in Treatment-Naive CML-CP), with 3-year minimum follow-up. Mutation screening, including patients who discontinued treatment and patients who had a clinically relevant on-treatment event (no confirmed complete cytogenetic response (cCCyR) and no major molecular response (MMR) within 12 months; fivefold increase in BCR-ABL1 with loss of MMR; loss of CCyR), yielded a small number of patients with mutations (dasatinib, n=17; imatinib, n=18). Dasatinib patients had a narrower spectrum of mutations (4 vs 12 sites for dasatinib vs imatinib), fewer phosphate-binding loop mutations (1 vs 9 mutations), fewer multiple mutations (1 vs 6 patients) and greater occurrence of T315I (11 vs 0 patients). This trial was registered at www.clinicaltrials.gov as NCT00481247.T P Hughes, G Saglio, A Quintás-Cardama, M J Mauro, D-W Kim, J H Lipton6, M B Bradley-Garelik, J Ukropec and A Hochhau
Molecular measurement of BCR-ABL transcript variations in chronic myeloid leukemia patients in cytogenetic remission
<p>Abstract</p> <p>Background</p> <p>The monitoring of <it>BCR-ABL </it>transcript levels by real-time quantitative polymerase chain reaction (RT-qPCR) has become important to assess minimal residual disease (MRD) and standard of care in the treatment of chronic myeloid leukemia (CML). In this study, we performed a prospective, sequential analysis using RT-qPCR monitoring of <it>BCR-ABL </it>gene rearrangements in blood samples from 91 CML patients in chronic phase (CP) who achieved complete cytogenetic remission (CCyR) and major molecular remission (MMR) throughout imatinib treatment.</p> <p>Methods</p> <p>The absolute level of <it>BCR-ABL </it>transcript from peripheral blood was serially measured every 4 to 12 weeks by RT-qPCR. Only level variations > 0.5%, according to the international scale, was considered positive. Sequential cytogenetic analysis was also performed in bone marrow samples from all patients using standard protocols.</p> <p>Results</p> <p>Based on sequential analysis of <it>BCR-ABL </it>transcripts, the 91 patients were divided into three categories: (A) 57 (62.6%) had no variation on sequential analysis; (B) 30 (32.9%) had a single positive variation result obtained in a single sample; and (C) 4 (4.39%) had variations of <it>BCR-ABL </it>transcripts in at least two consecutive samples. Of the 34 patients who had elevated levels of transcripts (group B and C), 19 (55.8%) had a < 1% of <it>BCR-ABL/BCR </it>ratio, 13 (38.2%) patients had a 1% to 10% increase and 2 patients had a >10% increase of RT-qPCR. The last two patients had lost a CCyR, and none of them showed mutations in the <it>ABL </it>gene. Transient cytogenetic alterations in Ph-negative cells were observed in five (5.5%) patients, and none of whom lost CCyR.</p> <p>Conclusions</p> <p>Despite an increase levels of <it>BCR-ABL/BCR </it>ratio variations by RT-qPCR, the majority of CML patients with MMR remained in CCyR. Thus, such single variations should neither be considered predictive of subsequent failure and nor an indication for altering imatinib dose or switching to second generation therapy. Changing of imatinib on the basis of <it>BCR-ABL/BCR</it>% sustained increase and mutational studies is a prudent approach for preserving other therapeutic options in imatinib-resistant patients.</p
DNA Scaffolds for the Dictated Assembly of Left-/Right-Handed Plasmonic Au NP Helices with Programmed Chiro-Optical Properties
Within the broad interest of assembling chiral left- and right-handed helices of plasmonic nanoparticles (NPs), we introduce the DNA-guided organization of left- or right-handed plasmonic Au NPs on DNA scaffolds. The method involves the self-assembly of stacked 12 DNA quasi-rings interlinked by 30 staple-strands. By the functionalization of one group of staple units with programmed tether-nucleic acid strands and additional staple elements with long nucleic acid chains, acting as promoter strands, the promoter-guided assembly of barrels modified with 12 left- or right-handed tethers is achieved. The subsequent hybridization of Au NPs functionalized with single nucleic acid tethers yields left- or right-handed structures of plasmonic NPs. The plasmonic NP structures reveal CD spectra at the plasmon absorbance, and the NPs are imaged by HR-TEM. Using geometrical considerations corresponding to the left- and right-handed helices of the Au NPs, the experimental CD spectra of the plasmonic Au NPs are modeled by theoretical calculations
- …