5,366 research outputs found

    Lipase From Thermoalkalophilic Pseudomonas species as an Additive in Potential Laundry Detergent Formulations

    Get PDF
    Lipase isolated from a thermoalkalophilic Pseudomonas species was used as additive to improve the degree of olive oil removal from cotton fabric in the presence of surfactants. The lipase used in this study was found to be more effective with non ionic surfactants as compared to ionic surfactants. In terms of stability, there was no decrease in activity found in the presence of Tween 85, Span 80 and Span 20. Lipase from Pseudomonas species was most active in the presence of Tween 85, Span 80 and Span 20. The application of lipase from Pseudomonas species as an additive in the formulation containing Span 80 has improved oil removal by 36% using the washing system consisting 5 U/mL lipase, at 70 °C for 20 min and 0.8% of Span 80 as surfactant. Considering that lipase from Pseudomonas species is stable in high pH and temperatures in the presence of various surfactants, therefore it is suitable to be incorporated as additives in potential detergent formulations

    How do Doctors Decide When to Prescribe Antibiotics in Upper Respiratory Tract Infections?

    Get PDF
    Purpose: To examine the predictive features which doctors use when prescribing antibiotics in upper respiratory tract infections (URTIs). Method: This is a cross sectional, prospective study done in a teaching university primary care centre in Kuala Lumpur from June to August 2000. Twelve primary care practitioners participated in the study. Each practitioner was asked to record clinical data and prescriptions given to twenty consecutive patients with URTIs using a structured questionnaire for each patient

    Do Primary Care Doctors Behave the Same in Antibiotic Prescribing for Upper Respiratory Tract Infections?

    Get PDF
    Purpose: To compare the extent of using an evidence-based approach in managing upper respiratory tract infections (URTIs) among primary care doctors from two different government clinic settings in Malaysia. Method: This is a cross sectional, prospective study carried out in a teaching university primary care centre in Kuala Lumpur (KL) where doctors are constantly exposed to continuing medical education (CME) and seven health clinics in Seremban, Malaysia where doctors have less exposure to CME in the year 2000. Twelve primary care practitioners in KL and 13 in Seremban participated in the study. Each practitioner was asked to record clinical data and prescriptions given to twenty consecutive patients with URTIs using a structured questionnaire for each patient. The extent of usage of an evidence-based approach in managing URTIs among practitioners was assessed

    Assessment of the variability of airborne contamination levels in an intensive care unit over a 24 hour period

    Get PDF
    Introduction: The objective of this study was to evaluate the variability in the dynamics and levels of airborne contamination within a hospital ICU in order to establish an improved understanding of the extent to which airborne bioburden contributes to cross-infection of patients. Microorganisms from the respiratory tract or skin can become airborne by coughing, sneezing and periods of increased activity such as bed changes and staff rounds. Current knowledge of the clinical microflora is limited however it is estimated that 10-33% of nosocomial infections are transmitted via air. Methods: Environmental air monitoring was conducted in Glasgow Royal Infirmary ICU, in the open ward and in patient isolation rooms. A sieve impactor air sampler was used to collect 500 L air samples every 15 minutes over 10 hour (08:00-18:00 h) and 24 hour (08:00-08:00 h) periods. Samples were collected, room activity logged and the bacterial contamination levels were recorded as CFU/m3 of air. Results: A high degree of variability in levels of airborne contamination was observed over the course of a 10 hour day and a 24 period in a hospital ICU. Counts ranged from 12-510 CFU/m3 over 24 hours in an isolation room occupied for 10 days by a patient with C. difficile infection. Contamination levels were found to be lowest during the night and in unoccupied rooms, with an average value of 20 CFU/m3. Peaks in airborne contamination showed a direct relation to an increase in room activity. Conclusions: This study demonstrates the degree of airborne contamination that can occur in an ICU over a 24 hour period. Numerous factors were found to contribute to microbial air contamination and consideration should be given to potential improved infection control strategies and decontamination technologies which could be deployed within the clinical environment to reduce the airborne contamination levels, with the ultimate aim of reducing healthcare-associated infections from environmental sources

    Evaluation of the airborne contamination levels in an intensive care unit over a 24 hour period

    Get PDF
    Airborne transmission of infectious microorganisms poses a critical threat to human health, particularly in the clinical setting where it is estimated that 10-33% of nosocomial infections are spread via the air. Within the clinical environment, microorganisms originating from the human respiratory tract or skin can become airborne by coughing and sneezing, and periods of increased activity such as bed and dressing changes, movement, staff rounds and visiting hours. Current knowledge of the clinical airborne microflora is limited and there is uncertainty surrounding the contribution of airborne microorganisms to the transmission of nosocomial infection. This study aims to establish an improved understanding of the variability in the dynamics and levels of airborne microbial contamination within an operational intensive care unit (ICU). Methods Environmental monitoring of airborne contamination levels was conducted in Glasgow Royal Infirmary ICU, in the open ward and in both occupied and unoccupied patient isolation rooms. Monitoring was performed using a sieve impactor air sampler, with 500 L air samples collected every 15 minutes over 10 hour (08:00-18:00 h) and 24 hour (08:00-08:00 h) periods. Samples were collected on tryptone soya agar (TSA) plates, and the bacterial contamination levels were recorded as CFU/m3 of air. An activity log was also collated over the 10 hour and 24 hour sampling periods in order to record any activity occurring in the ward/room that might contribute to spikes in airborne contamination levels. Results Results highlight the degree of variability in levels of airborne contamination over the course of both a working day and a 24 hour period in a hospital ICU. A high degree of variability was observed across the 24 hour period, with counts ranging from 12-510 CFU/m3 in one study in an occupied patient room. Peaks in airborne contamination showed a direct relation to an increase in room activity. Monitoring found contamination levels to be lower overall during the night, and in unoccupied isolation rooms, with an average value of 20 CFU/m3. The highest counts were observed in an isolation room occupied for 10 days by a patient with C. difficile infection which generated an average microbial load of 104 CFU/m3 and a peak value of 510 CFU/m3. Discussion This study has demonstrated the degree of airborne contamination that can occur in the ICU environment over a 24 hour period. Numerous factors were found to contribute to the microbial air contamination levels, including patient status, length of room occupation, time of day and room activity, and further work is required to establish the extent to which this airborne bioburden contributes to cross-infection of patients

    Universal relations for quasinormal modes of neutron stars in R2R^2 gravity

    Full text link
    We construct quasinormal modes for neutron stars in R2R^2 gravity in the Einstein frame, considering scalar masses in the sub-neV range. In particular, we investigate the fundamental quadrupole fluid f-modes and the dipole fluid F-modes. Employing six equations of state covering matter content with nucleons, hyperons, and quarks, we then propose universal relations for the quadrupole f-modes and dipole F-modes. The dipole F-modes are ultra-long lived and, for the lower scalar masses, their frequencies are inversely proportional to the corresponding Compton wavelength.Comment: 25 pages, 23 figures; Some figures update

    The PULSE@Parkes project: A new observing technique for long-term pulsar monitoring

    Full text link
    The PULSE@Parkes project has been designed to monitor the rotation of radio pulsars over time spans of days to years. The observations are obtained using the Parkes 64-m and 12-m radio telescopes by Australian and international high school students. These students learn the basis of radio astronomy and undertake small projects with their observations. The data are fully calibrated and obtained with the state-of-the-art pulsar hardware available at Parkes. The final data sets are archived and are currently being used to carry out studies of 1) pulsar glitches, 2) timing noise, 3) pulse profile stability over long time scales and 4) the extreme nulling phenomenon. The data are also included in other projects such as gamma-ray observatory support and for the Parkes Pulsar Timing Array project. In this paper we describe the current status of the project and present the first scientific results from the Parkes 12-m radio telescope. We emphasise that this project offers a straightforward means to enthuse high school students and the general public about radio astronomy while obtaining scientifically valuable data sets.Comment: accepted for publication by PAS

    Estimation of the effect of SLCO1B1 polymorphisms on lopinavir plasma concentration in HIV-Infected Adults

    Get PDF
    Background—The organic anion transporting polypeptides (OATP)/SLCO family represents an important class of hepatic drug uptake transporters that mediate the sodium independent transport of a diverse range of amphipathic organic compounds, including the protease inhibitors. The SLCO1B1 521T>C (rs4149056) single nucleotide polymorphism (SNP) has been consistently associated with reduced transport activity in vivo, and we previously showed an association of this polymorphism with lopinavir plasma concentrations. The aim of this study was to develop a population pharmacokinetic (PK) model to quantify the impact of 521T>C. Methods—A population PK analysis was performed with 594 plasma samples from 375 patients receiving lopinavir/ritonavir. Non-linear mixed effects modelling was applied to explore the effects of SLCO1B1 521T>C and patient demographics. Simulations of the lopinavir concentration profile were performed with different dosing regimens considering the different alleles. Results—A one-compartment model with first-order absorption best described the data. Population clearance was 5.67 L/h with inter-patient variability of 37%. Body weight was the only demographic factor influencing clearance, which increased 0.5 L/h for every 10 kg increase. Homozygosity for the C allele was associated with a 37% lower clearance, and 14% for heterozygosity, which were statistically significant. Conclusion—These data show an association between SLCO1B1 521T>C and lopinavir clearance. The association is likely to be mediated through reduced uptake by hepatocytes leading to higher plasma concentrations of lopinavir. Further studies are now required to confirm the association and to assess the influence of other polymorphisms in the SLCO family on lopinavir PK
    • …
    corecore