10 research outputs found

    Quantum state engineering in a cavity by Stark chirped rapid adiabatic passage

    Get PDF
    We propose a robust scheme to generate single-photon Fock states and atom-photon and atom-atom entanglement in atom-cavity systems. We also present a scheme for quantum networking between two cavity nodes using an atomic channel. The mechanism is based on Stark-chirped rapid adiabatic passage (SCRAP) and half-SCRAP processes in a microwave cavity. The engineering of these states depends on the design of the adiabatic dynamics through the static and dynamic Stark shifts.Comment: 7 pages, 8 figures, to be appeared in PL

    Low-energy neutron irradiation on Bi-based (2223) Ag superconductors

    No full text
     Bi-based and Ag-doped superconductors were irradiated by neutrons. Experimental result showed that XRD patern-intensity of irradiated Bi-based sample was decreased and The Tc of these samples were decreased by 7-10 K. The neutron irradiated sample was also found to decrease by 50% the normal state resistivity of samples. Therefore, neutron irradiation is a useful method to improve the superconductivity behavior of Bi-based materials

    Influences of Sr-90 beta-ray irradiation on electrical characteristics of carbon nanoparticles

    No full text
    This work is concerned with the low cost fabrication of carbon nanoparticles (CNPs), and its application to beta ray detection. The structural and morphological properties of the CNPs were obtained by spectral and microscopy techniques. A system based on CNPs application in the metal-semiconductor-metal (MSM) junction platform, which acts as a beta-ray (β-ray) sensor, is fabricated. The prototype is characterised by modelling, Monte Carlo simulation, and electrical investigations. Changes to the electrical behaviour of the proposed MSM system due to β-ray irradiation are validated by experimental results in both Ohmic and non-Ohmic (Schottky) contacts. The simulation was performed using the MCNPX code, which showed that most of the β-ray energies are deposited into CNPs and electrodes. However, in the Ohmic contact, because the β-ray is induced, the current of CNPs is decreased. The reduction of the current might be due to the change of the carrier properties by increasing the scattering of electrons. The current-density equation for electrons was employed for understanding the effects of β-ray in Ohmic contact of CNPs. On the contrary, in the Schottky contact case, CNPs current was increased with constant voltage when biased by β-ray irradiation. In this paper, the electron-hole generation using β-rays is dominant when compared to other significant effects of radiation exposure on semiconducting CNP-based Schottky contact. Hence, the current increment of CNPs can be justified by electron-hole generation in the depletion region

    Diffusion of hydrogen in metals

    No full text
    corecore