13 research outputs found

    Molecular characterization of glucose-6-phosphate dehydrogenase deficient variants in Baghdad city - Iraq

    Get PDF
    Background: Although G6PD deficiency is the most common genetically determined blood disorder among Iraqis, its molecular basis has only recently been studied among the Kurds in North Iraq, while studies focusing on Arabs in other parts of Iraq are still absent. Methods: A total of 1810 apparently healthy adult male blood donors were randomly recruited from the national blood transfusion center in Baghdad. They were classified into G6PD deficient and non-deficient individuals based on the results of methemoglobin reduction test (MHRT), with confirmation of deficiency by subsequent enzyme assays. DNA from deficient individuals was studied using a polymerase chain reaction-Restriction fragment length polymorphism (PCR-RFLP) for four deficient molecular variants, namely G6PD Mediterranean (563 C®T), Chatham (1003 G®A), A- (202 G®A) and Aures (143 T®C). A subset of those with the Mediterranean variant, were further investigated for the 1311 (C®T) silent mutation. Results: G6PD deficiency was detected in 109 of the 1810 screened male individuals (6.0%). Among 101 G6PD deficient males molecularly studied, the Mediterranean mutation was detected in 75 cases (74.3%), G6PD Chatham in 5 cases (5.0%), G6PD A- in two cases (2.0%), and G6PD Aures in none. The 1311 silent mutation was detected in 48 out of the 51 G6PD deficient males with the Mediterranean variant studied (94.1%). Conclusions: Three polymorphic variants namely: the Mediterranean, Chatham and A-, constituted more than 80% of G6PD deficient variants among males in Baghdad. Iraq. This observation is to some extent comparable to othe

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.

    Get PDF

    Evolution of an influenza pandemic in 13 countries from 5 continents monitored by protein microarray from neonatal screening bloodspots

    Get PDF
    BACKGROUND: Because of lack of worldwide standardization of influenza virus surveillance, comparison between countries of impact of a pandemic is challenging. For that, other approaches to allow internationally comparative serosurveys are welcome. OBJECTIVES: Here we explore the use of neonatal screening dried blood spots to monitor the trends of the 2009 influenza A (H1N1) pdm virus by the use of a protein microarray. STUDY DESIGN: We contacted colleagues from neonatal screening laboratories and asked for their willingness to participate in a study by testing anonymized neonatal screening bloodspots collected during the course of the pandemic. In total, 7749 dried blood spots from 13 countries in 5 continents where analyzed by using a protein microarray containing HA1 recombinant proteins derived from pandemic influenza A (H1N1) 2009 as well as seasonal influenza viruses. RESULTS: Results confirm the early start of the pandemic with extensive circulation in the US and Canada, when circulation of the new virus was limited in other parts of the world. The data collected from sites in Mexico suggested limited circulation of the virus during the early pandemic phase in this country. In contrast and to our surprise, an increase in seroprevalence early in 2009 was noted in the dataset from Argentina, suggestive of much more widespread circulation of the novel virus in this country than in Mexico. CONCLUSIONS: We conclude that this uniform serological testing of samples from a highly standardized screening system offers an interesting opportunity for monitoring population level attack rates of widespread diseases outbreaks and pandemics

    Enhanced interpretation of newborn screening results without analyte cutoff values

    No full text
    Purpose: To improve quality of newborn screening by tandem mass spectrometry with a novel approach made possible by the collaboration of 154 laboratories in 49 countries. Methods: A database of 767,464 results from 12,721 cases affected with 60 conditions was used to build multivariate pattern recognition software that generates tools integrating multiple clinically significant results into a single score. This score is determined by the overlap between normal and disease ranges, penetration within the disease range, differences between conditions, and weighted correction factors. Results: Ninety tools target either a single condition or the differential diagnosis between multiple conditions. Scores are expressed as the percentile rank among all cases with the same condition and are compared to interpretation guidelines. Retrospective evaluation of past cases suggests that these tools could have avoided at least half of 279 false-positive outcomes caused by carrier status for fatty-acid oxidation disorders and could have prevented 88% of known false-negative events. Conclusion: Application of this computational approach to raw data is independent from single analyte cutoff values. In Minnesota, the tools have been a major contributing factor to the sustained achievement of a false-positive rate below 0.1% and a positive predictive value above 60%. © 2012 American College of Medical Genetics and Genomics

    Enhanced interpretation of newborn screening results without analyte cutoff values

    Get PDF
    Purpose: To improve quality of newborn screening by tandem mass spectrometry with a novel approach made possible by the collaboration of 154 laboratories in 49 countries. Methods: A database of 767,464 results from 12,721 cases affected with 60 conditions was used to build multivariate pattern recognition software that generates tools integrating multiple clinically significant results into a single score. This score is determined by the overlap between normal and disease ranges, penetration within the disease range, differences between conditions, and weighted correction factors. Results: Ninety tools target either a single condition or the differential diagnosis between multiple conditions. Scores are expressed as the percentile rank among all cases with the same condition and are compared to interpretation guidelines. Retrospective evaluation of past cases suggests that these tools could have avoided at least half of 279 false-positive outcomes caused by carrier status for fatty-acid oxidation disorders and could have prevented 88% of known false-negative events. Conclusion: Application of this computational approach to raw data is independent from single analyte cutoff values. In Minnesota, the tools have been a major contributing factor to the sustained achievement of a false-positive rate below 0.1% and a positive predictive value above 60%. © 2012 American College of Medical Genetics and Genomics
    corecore