4 research outputs found

    Puzzles of Dark Matter - More Light on Dark Atoms?

    Full text link
    Positive results of dark matter searches in experiments DAMA/NaI and DAMA/LIBRA confronted with results of other groups can imply nontrivial particle physics solutions for cosmological dark matter. Stable particles with charge -2, bound with primordial helium in O-helium "atoms" (OHe), represent a specific nuclear-interacting form of dark matter. Slowed down in the terrestrial matter, OHe is elusive for direct methods of underground Dark matter detection using its nuclear recoil. However, low energy binding of OHe with sodium nuclei can lead to annual variations of energy release from OHe radiative capture in the interval of energy 2-4 keV in DAMA/NaI and DAMA/LIBRA experiments. At nuclear parameters, reproducing DAMA results, the energy release predicted for detectors with chemical content other than NaI differ in the most cases from the one in DAMA detector. Moreover there is no bound systems of OHe with light and heavy nuclei, so that there is no radiative capture of OHe in detectors with xenon or helium content. Due to dipole Coulomb barrier, transitions to more energetic levels of Na+OHe system with much higher energy release are suppressed in the correspondence with the results of DAMA experiments. The proposed explanation inevitably leads to prediction of abundance of anomalous Na, corresponding to the signal, observed by DAMA.Comment: Contribution to Proceedings of XIII Bled Workshop "What Comes beyond the Standard Model?

    Almost-Commutative Geometries Beyond the Standard Model II: New Colours

    Full text link
    We will present an extension of the standard model of particle physics in its almost-commutative formulation. This extension is guided by the minimal approach to almost-commutative geometries employed in [13], although the model presented here is not minimal itself. The corresponding almost-commutative geometry leads to a Yang-Mills-Higgs model which consists of the standard model and two new fermions of opposite electro-magnetic charge which may possess a new colour like gauge group. As a new phenomenon, grand unification is no longer required by the spectral action.Comment: Revised version for publication in J.Phys.A with corrected Higgs masse

    Almost-Commutative Geometries Beyond the Standard Model III: Vector Doublets

    Full text link
    We will present a new extension of the standard model of particle physics in its almostcommutative formulation. This extension has as its basis the algebra of the standard model with four summands [11], and enlarges only the particle content by an arbitrary number of generations of left-right symmetric doublets which couple vectorially to the U(1)_YxSU(2)_w subgroup of the standard model. As in the model presented in [8], which introduced particles with a new colour, grand unification is no longer required by the spectral action. The new model may also possess a candidate for dark matter in the hundred TeV mass range with neutrino-like cross section

    Dark matter with invisible light from heavy double charged leptons of almost-commutative geometry?

    Full text link
    A new candidate of cold dark matter arises by a novel elementary particle model: the almostcommutative AC-geometrical framework. Two heavy leptons are added to the Standard Model, each one sharing a double opposite electric charge and an own lepton flavor number The novel mathematical theory of almost-commutative geometry [1] wishes to unify gauge models with gravity. In this scenario two new heavy (m_L>100GeV), oppositely double charged leptons (A,C),(A with charge -2 and C with charge +2), are born with no twin quark companions. The model naturally involves a new U(1) gauge interaction, possessed only by the AC-leptons and providing a Coulomblike attraction between them. AC-leptons posses electro-magnetic as well as Z-boson interaction and, according to the charge chosen for the new U(1) gauge interaction, a new "invisible light" interaction. Their final cosmic relics are bounded into "neutral" stable atoms (AC) forming the mysterious cold dark matter, in the spirit of the Glashow's Sinister model. An (AC) state is reached in the early Universe along a tail of a few secondary frozen exotic components. They should be now here somehow hidden in the surrounding matter. The two main secondary manifest relics are C (mostly hidden in a neutral (Cee) "anomalous helium" atom, at a 10-8 ratio) and a corresponding "ion" A bounded with an ordinary helium ion (4He); indeed the positive helium ions are able to attract and capture the free A fixing them into a neutral relic cage that has nuclear interaction (4HeA).Comment: This paper has been merged with [astro-ph/0603187] for publication in Classical and Quantum Gravit
    corecore