73 research outputs found

    Dynamic visualization of membrane-inserted fraction of pHluorin-tagged channels using repetitive acidification technique.

    Get PDF
    Background Changes in neuronal excitability, synaptic efficacy and generally in cell signaling often result from insertion of key molecules into plasma membrane (PM). Many of the techniques used for monitoring PM insertion lack either spatial or temporal resolution. Results We improved the imaging method based on time-lapse total internal reflection fluorescence (TIRF) microscopy and pHluorin tagging by supplementing it with a repetitive extracellular acidification protocol. We illustrate the applicability of this method by showing that brief activation of NMDA receptors ("chemical LTP") in cultured hippocampal neurons induced a persistent PM insertion of glutamate receptors containing the pHluorin-tagged GluR-A(flip) subunits. Conclusion The repetitive acidification technique provides a more accurate way of monitoring the PM-inserted fraction of fluorescently tagged molecules and offers a good temporal and spatial resolution

    Emerging role of (endo)cannabinoids in migraine

    Get PDF
    © 2018 Leimuranta, Khiroug and Giniatullin. In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain. Individual sections of this review cover key aspects of this topic, such as: (i) the current knowledge on the endocannabinoid system (ECS) with emphasis on expression of its components in migraine related structures; (ii) distinguishing peripheral from central site of action of cannabinoids, (iii) proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv) therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v) dual (possibly opposing) actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors. We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD) hypothesis, which implies reduced tone of endocannabinoids in migraine patients. We further discuss the control of cortical excitability by cannabinoids via inhibition of cortical spreading depression (CSD) underlying the migraine aura. Finally, we present our view on perspectives of Cannabis-derived (extracted or synthetized marijuana components) or novel endocannabinoid therapeutics in migraine treatment

    Endoplasmic reticulum stress inhibition protects against excitotoxic neuronal injury in the rat brain.

    Get PDF
    Elevated brain glutamate with activation of neuronal glutamate receptors accompanies neurological disorders, such as epilepsy and brain trauma. However, the mechanisms by which excitotoxicity triggers neuronal injury are not fully understood. We have studied the glutamate receptor agonist kainic acid (KA) inducing seizures and excitotoxic cell death. KA caused the disintegration of the endoplasmic reticulum (ER) membrane in hippocampal neurons and ER stress with the activation of the ER proteins Bip, Chop, and caspase-12. Salubrinal, inhibiting eIF2alpha (eukaryotic translation initiation factor 2 subunit alpha) dephosphorylation, significantly reduced KA-induced ER stress and neuronal death in vivo and in vitro. KA-induced rise in intracellular calcium was not affected by Salubrinal. The results show that ER responses are essential parts of excitotoxicity mediated by glutamate receptor activation and that Salubrinal decreases neuronal death in vivo. Inhibition of ER stress by small molecular compounds may be beneficial for treatment of various neuronal injuries and brain disorders

    Photoactivatable drugs for nicotinic optopharmacology

    Get PDF
    Photoactivatable pharmacological agents have revolutionized neuroscience, but the palette of available compounds is limited. We describe a general method for caging tertiary amines by using a stable quaternary ammonium linkage that elicits a red shift in the activation wavelength. We prepared a photoactivatable nicotine (PA-Nic), uncageable via one- or two-photon excitation, that is useful to study nicotinic acetylcholine receptors (nAChRs) in different experimental preparations and spatiotemporal scales

    Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Along with high affinity binding of epibatidine (<it>K</it><sub>d1</sub>≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (<it>K</it><sub>d2</sub>≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [<sup>3</sup>H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites.</p> <p>Results</p> <p>Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [<sup>3</sup>H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [<sup>3</sup>H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates.</p> <p>Conclusions</p> <p>Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches.</p

    Recovery by N

    No full text

    Emerging role of (endo)cannabinoids in migraine

    No full text
    © 2018 Leimuranta, Khiroug and Giniatullin. In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain. Individual sections of this review cover key aspects of this topic, such as: (i) the current knowledge on the endocannabinoid system (ECS) with emphasis on expression of its components in migraine related structures; (ii) distinguishing peripheral from central site of action of cannabinoids, (iii) proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv) therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v) dual (possibly opposing) actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors. We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD) hypothesis, which implies reduced tone of endocannabinoids in migraine patients. We further discuss the control of cortical excitability by cannabinoids via inhibition of cortical spreading depression (CSD) underlying the migraine aura. Finally, we present our view on perspectives of Cannabis-derived (extracted or synthetized marijuana components) or novel endocannabinoid therapeutics in migraine treatment

    Recovery from desensitization of neuronal nicotinic acetylcholine receptors of rat chromaffin cells is modulated by intracellular calcium through distinct second messengers

    No full text
    The mechanisms through which changes in intracellular Ca2+ concentration ([Ca2+]i) might influence desensitization of neuronal nicotinic receptors (nAChRs) of rat chromaffin cells were investigated by simultaneous patch-clamp recording of membrane currents and confocal microscopy imaging of [Ca2+]i induced by nicotine. Increases in [Ca2+]i that were induced by membrane depolarization or occurred spontaneously did not influence inward currents elicited by focally applied test pulses (10 msec) of nicotine, indicating that raised [Ca2+]i per se did not trigger desensitization of nAChRs. Desensitization of nAChRs, evoked by 2 sec focal application of nicotine, which largely raised [Ca2+]i, was not affected by intracellular application of agents that activate or depress protein kinase C (PKC) or A (PKA) or inhibit phosphatase 1, 2 A and B. Conversely, recovery from desensitization was facilitated by the phorbol ester phorbol 12-myristate 13-acetate (PMA) or the phosphatase 2 B inhibiting complex of cyclosporin A-cyclophilin A, whereas it was impaired by the broad spectrum kinase inhibitor staurosporine. The effects of PMA or staurosporine were prevented by the intracellularly applied Ca2+ chelator BAPTA. The adenylate cyclase activator forskolin accelerated recovery, whereas the selective PKA antagonist Rp-cAMPS had an opposite effect. The action of staurosporine and Rp-cAMPS on recovery from desensitization was additive. It is proposed that when nAChRs are desensitized, they become susceptible to modulation by [Ca2+]i via intracellular second messengers such as serine/threonine kinases and calcineurin. Thus, the phosphorylation state of neuronal nAChRs appears to regulate their rate of recovery from desensitization
    corecore