39 research outputs found

    TaIrTe4 a ternary Type-II Weyl semi-metal

    Full text link
    In metallic condensed matter systems two different types of Weyl fermions can in principle emerge, with either a vanishing (type-I) or with a finite (type-II) density of states at the Weyl node energy. So far only WTe2 and MoTe2 were predicted to be type-II Weyl semi-metals. Here we identify TaIrTe4 as a third member of this family of topological semi-metals. TaIrTe4 has the attractive feature that it hosts only four well-separated Weyl points, the minimum imposed by symmetry. Moreover, the resulting topological surface states - Fermi arcs connecting Weyl nodes of opposite chirality - extend to about 1/3 of the surface Brillouin zone. This large momentum-space separation is very favorable for detecting the Fermi arcs spectroscopically and in transport experiments

    Nearly isotropic upper critical fields in a SrFe1.85_{1.85}Co0.15_{0.15}As2_{2} single crystal

    Full text link
    We study temperature dependent upper critical field Hc2H_{\rm c2} of a SrFe1.85_{1.85}Co0.15_{0.15}As2_{2} single crystal (\textit{Tc_c}=20.2 K) along \textit{ab}-plane and \textit{c}-axis through resistivity measurements up to 50 T. For the both crystalline directions, Hc2H_{\rm c2} becomes nearly isotropic at zero temperature limit, reaching \sim 48 T. The temperature dependence of the Hc2H_{\rm c2} curves is explained by interplay between orbital and Pauli limiting behaviors combined with the two band effects.Comment: Proceedings of M2S-IX, Tokyo 200

    Parity Transition of Spin-Singlet Superconductivity Using Sublattice Degrees of Freedom

    Get PDF
    縺(もつ)れ結晶で現れる多重超伝導状態の性質を解明. 京都大学プレスリリース. 2023-04-20.Recently, a superconducting (SC) transition from low-field (LF) to high-field (HF) SC states was reported in CeRh₂As₂, indicating the existence of multiple SC states. It has been theoretically noted that the existence of two Ce sites in the unit cell, the so-called sublattice degrees of freedom owing to the local inversion symmetry breaking at the Ce sites, can lead to the appearance of multiple SC phases even under an interaction inducing spin-singlet superconductivity. CeRh₂As₂ is considered as the first example of multiple SC phases owing to this sublattice degree of freedom. However, microscopic information about the SC states has not yet been reported. In this study, we measured the SC spin susceptibility at two crystallographically inequivalent As sites using nuclear magnetic resonance for various magnetic fields. Our experimental results strongly indicate a spin-singlet state in both SC phases. In addition, the antiferromagnetic phase, which appears within the SC phase, only coexists with the LF SC phase; there is no sign of magnetic ordering in the HF SC phase. The present Letter reveals unique SC properties originating from the locally noncentrosymmetric characteristics

    Orbital selective Fermi surface shifts and mechanism of high Tc_c superconductivity in correlated AFeAs (A=Li,Na)

    Get PDF
    Based on the dynamical mean field theory (DMFT) and angle resolved photoemission spectroscopy (ARPES), we have investigated the mechanism of high TcT_c superconductivity in stoichiometric LiFeAs. The calculated spectrum is in excellent agreement with the observed ARPES measurement. The Fermi surface (FS) nesting, which is predicted in the conventional density functional theory method, is suppressed due to the orbital-dependent correlation effect with the DMFT method. We have shown that such marginal breakdown of the FS nesting is an essential condition to the spin-fluctuation mediated superconductivity, while the good FS nesting in NaFeAs induces a spin density wave ground state. Our results indicate that fully charge self-consistent description of the correlation effect is crucial in the description of the FS nesting-driven instabilities.Comment: 5 pages, 4 figures, supporting informatio

    Vortex-glass phase transition and superconductivity in an under- doped (Ba,K)Fe2As2 single crystal

    Get PDF
    Measurements of magnetotransport and current-voltage (I-V) characteristics up to 9 T were used to investigate the vortex phase diagram of an under-doped Measurements of magnetotransport and current-voltage (I-V) characteristics up to 9 T were used to investigate the vortex phase diagram of an under-doped (Ba,K)Fe2As2 single crystal with Tc=26.2 K. It is found that the anisotropy ratio of the upper critical field Hc2 decreases from 4 to 2.8 with decreasing temperature from Tc to 24.8 K. Consistent with the vortex-glass theory, the I-V curves measured at H=9 T can be well scaled with the vortex-glass transition temperature of Tg=20.7 K and critical exponents z=4.1 and v=1. Analyses in different magnetic fields produced almost identical critical exponent values, with some variation in Tg, corroborating the existence of the vortex-glass transition in this under-doped (Ba,K)Fe2As2 single crystal up to 9 T. A vortex phase diagram is presented, based on the evolution of Tg and Hc2 with magnetic field.Comment: 23 pages, 7 figures. accepted in Phys. Rev.
    corecore