9 research outputs found

    Differential Roles of Environmental Enrichment in Alzheimer’s Type of Neurodegeneration and Physiological Aging

    Get PDF
    Impairment of hippocampal adult neurogenesis in aging or degenerating brain is a well-known phenomenon caused by the shortage of brain stem cell pool, alterations in the local microenvironment within the neurogenic niches, or deregulation of stem cell development. Environmental enrichment (EE) has been proposed as a potent tool to restore brain functions, to prevent aging-associated neurodegeneration, and to cure neuronal deficits seen in neurodevelopmental and neurodegenerative disorders. Here, we report our data on the effects of environmental enrichment on hippocampal neurogenesis in vivo and neurosphere-forming capacity of hippocampal stem/progenitor cells in vitro. Two models – Alzheimer’s type of neurodegeneration and physiological brain aging – were chosen for the comparative analysis of EE effects. We found that environmental enrichment greatly affects the expression of markers specific for stem cells, progenitor cells and differentiated neurons (Pax6, Ngn2, NeuroD1, NeuN) in the hippocampus of young adult rats or rats with Alzheimer’s disease (AD) model but less efficiently in aged animals. Application of time-lag mathematical model for the analysis of impedance traces obtained in real-time monitoring of cell proliferation in vitro revealed that EE could restore neurosphere-forming capacity of hippocampal stem/progenitor cells more efficiently in young adult animals (fourfold greater in the control group comparing to the AD model group) but not in the aged rats (no positive effect of environmental enrichment at all). In accordance with the results obtained in vivo, EE was almost ineffective in the recovery of hippocampal neurogenic reserve in vitro in aged, but not in amyloid-treated or young adult, rats. Therefore, EE-based neuroprotective strategies effective in AΞ²-affected brain could not be directly extrapolated to aged brain

    ВлияниС трансфузии ΠΈ гипоксии Π½Π° ΠΊΠ»Π΅Ρ‚ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ нСйроваскулярной Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ in vitro

    Get PDF
    Up to 57% of patients develop postoperative delirium after surgery for congenital heart defects (CHD). To reduce cerebral damage in pediatric patients during CHD surgery it is important to find out what inflicts the worse damage: would it be a systemic inflammatory response (SIR) triggered by transfusion, or hypoxia developed in non-transfused patients? In vitro evaluation of hypoxia and SIR effects on the neurovascular unit (NVU) cells might contribute to finding the answer.The aim of the study was to compare the effect of varying severity hypoxia and SIR on the functional activity of NUV cells in vitro.Materials and methods. An in vitro NVU model was designed including neurons, astrocytes and endotheliocytes. The effect of hypoxia on NVU was evaluated in the control (C) and 4 study groups (H 1-4), formed based on O2 content in the medium. The C group NVU were cultivated in standard conditions: N2-75%, O2-20%, CO2-5%; H1: N2-99%, O2-1%; H2: N2- 98%, O2-2%; H3: N2-97%, O2-3 %; H4: N2-96%, O2-4%. The significance of the differences was 0.0125. The effect of interleukin-6 (IL-6) content on NVU was measured by adding to culture medium pediatric patients’ serum with known minimal or maximal SIRS-response. The assessment was made in the Control - an intact NVU model, and 2 study groups – β€œMinimum” and β€œMaximum”, i.e. samples with minimum or maximum IL-6 content in culture, respectively. The significance of the differences was 0.017. The cells were incubated at a normothermia regimen for 30 minutes. Then, the functional activity of NVU cells was evaluated by measuring transendothelial resistance (TER) for 24 hours and Lucifer Yellow (LY) permeability test at 60 and 90 minutes after the start of the experiment.Results. After incubation under hypoxic conditions, TER changes occurred in all studied groups. However, they were statistically significant only in the group with 1% oxygen content in the medium. TER decrease in this group was observed after 2, 4 and 24 hours. LY permeability also changed at 60 and 90 minutes, similarly - in NVU cultivated with 1% oxygen in the medium. Minimal TER values were documented at 4 hours after patients’ serum was added to NVU cells culture medium, and TER increased at 24 hours in both study groups. Cellular permeability to LY changed significantly after 1 hour exposure in both groups - with minimum and maximum IL-6 content in the medium. Although at 90 minutes, there was no difference between the 3 groups in LY permeability tests.Conclusion: Intensive SIR demonstrated short-term but more deleterious than hypoxia, effect on cells in the NVU model. Hypoxia disrupted functional activity of NUV cells only at 1% O 2 concentration in the medium.Частота развития послСопСрационного дСлирия ΠΏΡ€ΠΈ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ Π²Ρ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ€ΠΎΠΊΠΎΠ² сСрдца (Π’ΠŸΠ‘) достигаСт 57%. Π’ поискС ΠΏΡƒΡ‚Π΅ΠΉ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠΈ Ρ†Π΅Ρ€Π΅Π±Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ поврСТдСния ΠΏΡ€ΠΈ ΠΊΠΎΡ€Ρ€Π΅ΠΊΡ†ΠΈΠΈ Π’ΠŸΠ‘ Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ Π²Π°ΠΆΠ½Ρ‹ΠΌ являСтся вопрос - Ρ‡Ρ‚ΠΎ опаснСС: гипоксия ΠΏΡ€ΠΈ ΠΎΡ‚ΠΊΠ°Π·Π΅ ΠΎΡ‚ трансфузии ΠΈΠ»ΠΈ дСйствиС ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ систСмного Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° (Π‘Π’Πž) ΠΏΡ€ΠΈ Π΅Π΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ. ИсслСдованиС дСйствия гипоксии ΠΈ Π‘Π’Πž Π½Π° ΠΊΠ»Π΅Ρ‚ΠΊΠΈ нСйроваскулярной Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ (НВЕ) in vitro способствуСт Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ Π΄Π°Π½Π½ΠΎΠ³ΠΎ вопроса.ЦСль исслСдования: ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ влияниС гипоксии Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ выраТСнности ΠΈ систСмного Π²ΠΎΡΠΏΠ°Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ нСйроваскулярной Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π‘Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π»ΠΈ in vitro модСль НВЕ, ΡΠΎΡΡ‚ΠΎΡΡ‰ΡƒΡŽ ΠΈΠ· Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ², астроцитов ΠΈ эндотСлиоцитов. ВлияниС гипоксии Π½Π° НВЕ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ (К) ΠΈ 4 исслСдуСмых (Π“1-4) Π³Ρ€ΡƒΠΏΠΏΠ°Ρ…. Π“Ρ€ΡƒΠΏΠΏΡ‹ сформировали ΠΏΠΎ ΡΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ О2 Π² срСдС: К – стандартныС условия ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡ: N2-75%, O2-20%, CO2-5%; Π“1: N2-99 %, O2-1 %; Π“2: N2-98 %, O2-2 %; Π“3: N2-97 %, O2-3 %; Π“4: N2-96 %, O2-4 %. Π—Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ составила 0,0125. ВлияниС содСрТания ΠΈΠ½Ρ‚Π΅Ρ€Π»Π΅ΠΉΠΊΠΈΠ½Π°-6 (Π˜Π›-6) Π½Π° НВЕ опрСдСляли ΠΏΡ€ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ с Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ сыворотки ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² дСтского возраста с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ, Π»ΠΈΠ±ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ напряТСниСм Π‘Π’Πž. ΠžΡ†Π΅Π½ΠΊΡƒ ΠΏΡ€ΠΎΠ²Π΅Π»ΠΈ Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ ΠΈ 2 исслСдуСмых Π³Ρ€ΡƒΠΏΠΏΠ°Ρ…: Β«ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΒ» – интактная модСль НВЕ; Π³Ρ€ΡƒΠΏΠΏΡ‹ Β«ΠœΠΈΠ½ΠΈΠΌΡƒΠΌΒ» ΠΈ Β«ΠœΠ°ΠΊΡΠΈΠΌΡƒΠΌΒ» - ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π»ΠΈΠ±ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ содСрТаниСм Π˜Π›-6 Π² ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Π΅ соотвСтствСнно. Π—Π½Π°Ρ‡ΠΈΠΌΠΎΡΡ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ составила 0,017. Π˜Π½ΠΊΡƒΠ±Π°Ρ†ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ Π½ΠΎΡ€ΠΌΠΎΡ‚Π΅Ρ€ΠΌΠΈΠΈ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 30 ΠΌΠΈΠ½ΡƒΡ‚. Π—Π°Ρ‚Π΅ΠΌ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ НВЕ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ измСрСния Ρ‚Ρ€Π°Π½ΡΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ сопротивлСния (Π’Π­Π‘) Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 24 часов ΠΈ измСрСния проницаСмости для краситСля Lucifer Yellow (LY) Ρ‡Π΅Ρ€Π΅Π· 60 ΠΈ 90 ΠΌΠΈΠ½ΡƒΡ‚ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° экспСримСнта.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ПослС ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΈ Π² условиях гипоксии измСнСния Π’Π­Π‘ наступили Π²ΠΎ всСх исслСдуСмых Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. Однако, Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ с 1% содСрТаниСм кислорода Π² срСдС ΠΎΠ½ΠΈ Π±Ρ‹Π»ΠΈ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹. БниТСния Π’Π­Π‘ Π² Π΄Π°Π½Π½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ наблюдали Ρ‡Π΅Ρ€Π΅Π· 2, 4 ΠΈ 24 часа. ΠŸΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ для краситСля LY измСнилась Ρ‡Π΅Ρ€Π΅Π· 60 ΠΈ 90 ΠΌΠΈΠ½ΡƒΡ‚ Ρ‚Π°ΠΊΠΆΠ΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² условиях ΠΈΡ… ΠΈΠ½ΠΊΡƒΠ±Π°Ρ†ΠΈΠΈ Π² срСдС с 1 % кислородом. ΠŸΡ€ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ НВЕ с сывороткой ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² выявили ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ значСния Π’Π­Π‘ Ρ‡Π΅Ρ€Π΅Π· 4 часа ΠΈ ΠΈΡ… дальнСйшСС ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· 24 часа для ΠΎΠ±Π΅ΠΈΡ… исслСдуСмых Π³Ρ€ΡƒΠΏΠΏ НВЕ. ΠŸΡ€ΠΎΠ½ΠΈΡ†Π°Π΅ΠΌΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ для LY Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ измСнилась ΠΊ 60-ΠΉ ΠΌΠΈΠ½ΡƒΡ‚Π΅ ΠΊΠ°ΠΊ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ с ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ, Ρ‚Π°ΠΊ ΠΈ с ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌ содСрТаниСм Π˜Π›-6 Π² срСдС. ΠŸΡ€ΠΈ этом ΠΊ 90-ΠΉ ΠΌΠΈΠ½ΡƒΡ‚Π΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ этого показатСля Π² исслСдуСмых Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… ΠΈ Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΠ΅ ΡƒΠΆΠ΅ Π½Π΅ наблюдали.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. НапряТСнный Π‘Π’Πž ΠΎΠΊΠ°Π·Π°Π» Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ΅, Π½ΠΎ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ дСйствиС Π½Π° модСль НВЕ, Ρ‡Π΅ΠΌ гипоксия. Гипоксия Π½Π°Ρ€ΡƒΡˆΠΈΠ»Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΡƒΡŽ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ НВЕ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ кислорода Π² срСдС - 1 %

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd

    Rising of intracellular NAD+ level and oppositely directed changes in CD38 expression in hippocampal cells in experimental Alzheimer's disease

    No full text
    The aim of the study was to assess the level of NAD+ in the brain of mice treated with beta-amyloid (AΞ²), as well as to determine the activity of ADP-ribosyl cyclase/CD38 and the number of CD38-immunopositive neurons, astrocytes and endothelial cells. Material and methods. The Alzheimer's disease model was reproduced by intrahippocampal administration of AΞ² to C57BL/6 mice. Determination of the NAD+ level in the extracellular fluid of the brain and in the hippocampal tissue was carried out by spectrophotometric analysis. Evaluation of the enzymatic activity of ADP-ribosyl cyclase/CD38 was carried out by the fluorimetric method, determination of the number of CD38-immunopositive cells by the immunohistochemistry method. Results and discussion. The level of NAD+ was significantly increased in the hippocampal tissue in mice after administration of AΞ², while the level of extracellular NAD+ did not change. The activity of ADP-ribosyl cyclase/CD38 in the hippocampal tissue did not change, but the number of CD38-immunopositive neurons decreased, and the number of CD38+ endothelial cells increased in the hippocampus of mice after administration of AΞ². Conclusion. Opposite changes in the expression of ADP-ribosyl cyclase / CD38 in neurons and endotheliocytes correspond to different metabolic states of these types of cells and, along with an increased intracellular pool of NAD+ in experimental Alzheimer's disease, reflect an adaptive stress response to AΞ² administration

    Indirect Negative Effect of Mutant Ataxin-1 on Short- and Long-Term Synaptic Plasticity in Mouse Models of Spinocerebellar Ataxia Type 1

    No full text
    Spinocerebellar ataxia type 1 (SCA1) is an intractable progressive neurodegenerative disease that leads to a range of movement and motor defects and is eventually lethal. Purkinje cells (PC) are typically the first to show signs of degeneration. SCA1 is caused by an expansion of the polyglutamine tract in the ATXN1 gene and the subsequent buildup of mutant Ataxin-1 protein. In addition to its toxicity, mutant Ataxin-1 protein interferes with gene expression and signal transduction in cells. Recently, it is evident that ATXN1 is not only expressed in neurons but also in glia, however, it is unclear the extent to which either contributes to the overall pathology of SCA1. There are various ways to model SCA1 in mice. Here, functional deficits at cerebellar synapses were investigated in two mouse models of SCA1 in which mutant ATXN1 is either nonspecifically expressed in all cell types of the cerebellum (SCA1 knock-in (KI)), or specifically in Bergmann glia with lentiviral vectors expressing mutant ATXN1 under the control of the astrocyte-specific GFAP promoter. We report impairment of motor performance in both SCA1 models. In both cases, prominent signs of astrocytosis were found using immunohistochemistry. Electrophysiological experiments revealed alteration of presynaptic plasticity at synapses between parallel fibers and PCs, and climbing fibers and PCs in SCA1 KI mice, which is not observed in animals expressing mutant ATXN1 solely in Bergmann glia. In contrast, short- and long-term synaptic plasticity was affected in both SCA1 KI mice and glia-targeted SCA1 mice. Thus, non-neuronal mechanisms may underlie some aspects of SCA1 pathology in the cerebellum. By combining the outcomes of our current work with our previous data from the B05 SCA1 model, we further our understanding of the mechanisms of SCA1

    Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit

    No full text
    Neuroinflammation is a complex inflammatory process in the central nervous system, which is sought to play an important defensive role against various pathogens, toxins or factors that induce neurodegeneration. The onset of neurodegenerative diseases and various microbial infections are counted as stimuli that can challenge the host immune system and trigger the development of neuroinflammation. The homeostatic nature of neuroinflammation is essential to maintain the neuroplasticity. Neuroinflammation is regulated by the activity of neuronal, glial, and endothelial cells within the neurovascular unit, which serves as a β€œplatform” for the coordinated action of pro- and anti-inflammatory mechanisms. Production of inflammatory mediators (cytokines, chemokines, reactive oxygen species) by brain resident cells or cells migrating from the peripheral blood, results in the impairment of blood-brain barrier integrity, thereby further affecting the course of local inflammation. In this review, we analyzed the most recent data on the central nervous system inflammation and focused on major mechanisms of neurovascular unit dysfunction caused by neuroinflammation and infections

    Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ модСлирования Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΌΠΎΠ·Π³Π° ΠΈ гСматоэнцСфаличСского Π±Π°Ρ€ΡŒΠ΅Ρ€Π° in vitro

    Get PDF
    Neurovascular unit (NVU) is an ensemble of brain cells (cerebral endothelial cells, astrocytes, pericytes, neurons, and microglia), which regulates processes of transport through the blood-brain barrier (BBB) and controls local microcirculation and intercellular metabolic coupling. Dysfunction of NVU contributes to numerous types of central nervous system pathology. NVU pathophysiology has been extensively studied in various animal models of brain disorders, and there is growing evidence that modern approaches utilizing in vitro models are very promising for the assessment of intercellular communications within the NVU. Development of NVU‑on-chip or BBB‑on-chip as well as 3D NVU and brain tissue models suggests novel clues to understanding cell-to-cell interactions critical for brain functional activity, being therefore very important for translational studies, drug discovery, and development of novel analytical platforms. One of the mechanisms controlled by NVU activity is neurogenesis in highly specialized areas of brain (neurogenic niches, NNs), which are well-equipped for the maintenance of stem/progenitor cell pool and proliferation, differentiation, and migration of newly formed neuronal and glial cells. Specific properties of brain microvascular endothelial cells, particularly, high content of mitochondria, are important for establishment of vascular support in NVU and NNs. Metabolic activity of cells within NNs and NVU contributes to maintaining intercellular communications critical for the multicellular module integrity. We will discuss modern approaches to development of optimal microenvironment for in vitro BBB, NVU and NN models with the special focus on neuroengineering and bioprinting potentialsНСйроваскулярная Π΅Π΄ΠΈΠ½ΠΈΡ†Π° (НВЕ) – это ΡΠΎΠ²ΠΎΠΊΡƒΠΏΠ½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π° (Ρ†Π΅Ρ€Π΅Π±Ρ€Π°Π»ΡŒΠ½Ρ‹Π΅ ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, астроциты, ΠΏΠ΅Ρ€ΠΈΡ†ΠΈΡ‚Ρ‹, Π½Π΅ΠΉΡ€ΠΎΠ½Ρ‹, микроглия), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π΅Π³ΡƒΠ»ΠΈΡ€ΡƒΡŽΡ‚ процСссы транспорта Ρ‡Π΅Ρ€Π΅Π· гСматоэнцСфаличСский Π±Π°Ρ€ΡŒΠ΅Ρ€ (Π“Π­Π‘), ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΡŽΡ‚ ΠΌΠ΅ΡΡ‚Π½ΡƒΡŽ ΠΌΠΈΠΊΡ€ΠΎΡ†ΠΈΡ€ΠΊΡƒΠ»ΡΡ†ΠΈΡŽ, ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΡƒΡŽ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ связь. Дисфункция НВЕ способствуСт возникновСнию ΠΌΠ½ΠΎΠ³ΠΈΡ… Ρ‚ΠΈΠΏΠΎΠ² ΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠΈ Ρ†Π΅Π½Ρ‚Ρ€Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π΅Ρ€Π²Π½ΠΎΠΉ систСмы. ΠŸΠ°Ρ‚ΠΎΡ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ НВЕ ΡˆΠΈΡ€ΠΎΠΊΠΎ ΠΈΠ·ΡƒΡ‡Π΅Π½Π° Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… модСлях Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΌΠΎΠ·Π³Π° Π½Π° ΠΆΠΈΠ²ΠΎΡ‚Π½Ρ‹Ρ…. Π’ настоящСС врСмя появляСтся всС большС ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π² Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ соврСмСнныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ с использованиСм ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ in vitro Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ пСрспСктивны для ΠΎΡ†Π΅Π½ΠΊΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΉ Π²Π½ΡƒΡ‚Ρ€ΠΈ НВЕ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° сосудисто-Π½Π΅Ρ€Π²Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ† Π½Π° Ρ‡ΠΈΠΏΠ΅ ΠΈΠ»ΠΈ Π“Π­Π‘ Π½Π° Ρ‡ΠΈΠΏΠ΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ 3D НВЕ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Ρ‚ΠΊΠ°Π½ΠΈ ΠΌΠΎΠ·Π³Π° ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°ΡŽΡ‚ Π½ΠΎΠ²Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ пониманию ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… взаимодСйствий, критичСских для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠΉ активности ΠΌΠΎΠ·Π³Π°, поэтому ΠΎΠ½ΠΈ ΠΎΡ‡Π΅Π½ΡŒ Π²Π°ΠΆΠ½Ρ‹ для трансляционных исслСдований, открытия лСкарств ΠΈ создания Π½ΠΎΠ²Ρ‹Ρ… аналитичСских ΠΏΠ»Π°Ρ‚Ρ„ΠΎΡ€ΠΌ. Одним ΠΈΠ· ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ контролируСтся Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ НВЕ, являСтся Π½Π΅ΠΉΡ€ΠΎΠ³Π΅Π½Π΅Π· Π² узкоспСциализированных областях ΠΌΠΎΠ·Π³Π° (Π½Π΅ΠΉΡ€ΠΎΠ³Π΅Π½Π½Ρ‹Π΅ ниши, НН), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ слуТат источником для поддСрТания ΠΏΡƒΠ»Π° стволовых/ ΠΏΡ€ΠΎΠ³Π΅Π½ΠΈΡ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ, ΠΏΡ€ΠΎΠ»ΠΈΡ„Π΅Ρ€Π°Ρ†ΠΈΠΈ, Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Ρ†ΠΈΠΈ ΠΈ ΠΌΠΈΠ³Ρ€Π°Ρ†ΠΈΠΈ Π½ΠΎΠ²ΠΎΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π½Π΅ΠΉΡ€ΠΎΠ½ΠΎΠ² ΠΈ Π³Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ. БпСцифичСскиС свойства ΡΠ½Π΄ΠΎΡ‚Π΅Π»ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΊΠ»Π΅Ρ‚ΠΎΠΊ микрососудов Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°, Π² частности высокоС содСрТаниС ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ, Π²Π°ΠΆΠ½Ρ‹ для создания сосудистой ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΊΠΈ ΠΏΡ€ΠΈ НВЕ ΠΈ НН. ΠœΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‡Π΅ΡΠΊΠ°Ρ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ Π²Π½ΡƒΡ‚Ρ€ΠΈ НН ΠΈ НВЕ способствуСт ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Π½ΠΈΡŽ ΠΌΠ΅ΠΆΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΌΡƒΠ½ΠΈΠΊΠ°Ρ†ΠΈΠΉ, критичСски Π²Π°ΠΆΠ½Ρ‹Ρ… для цСлостности ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ модуля. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ ΠΎΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ соврСмСнныС ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ микросрСды для in vitro ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π“Π­Π‘, НВЕ ΠΈ НН. ОсобоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ пСрспСктивам Π½Π΅ΠΉΡ€ΠΎΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€ΠΈΠΈ ΠΈ Π±ΠΈΠΎΠΏΠ΅Ρ‡Π°Ρ‚
    corecore