9 research outputs found
Differential Roles of Environmental Enrichment in Alzheimerβs Type of Neurodegeneration and Physiological Aging
Impairment of hippocampal adult neurogenesis in aging or degenerating brain is a well-known phenomenon caused by the shortage of brain stem cell pool, alterations in the local microenvironment within the neurogenic niches, or deregulation of stem cell development. Environmental enrichment (EE) has been proposed as a potent tool to restore brain functions, to prevent aging-associated neurodegeneration, and to cure neuronal deficits seen in neurodevelopmental and neurodegenerative disorders. Here, we report our data on the effects of environmental enrichment on hippocampal neurogenesis in vivo and neurosphere-forming capacity of hippocampal stem/progenitor cells in vitro. Two models β Alzheimerβs type of neurodegeneration and physiological brain aging β were chosen for the comparative analysis of EE effects. We found that environmental enrichment greatly affects the expression of markers specific for stem cells, progenitor cells and differentiated neurons (Pax6, Ngn2, NeuroD1, NeuN) in the hippocampus of young adult rats or rats with Alzheimerβs disease (AD) model but less efficiently in aged animals. Application of time-lag mathematical model for the analysis of impedance traces obtained in real-time monitoring of cell proliferation in vitro revealed that EE could restore neurosphere-forming capacity of hippocampal stem/progenitor cells more efficiently in young adult animals (fourfold greater in the control group comparing to the AD model group) but not in the aged rats (no positive effect of environmental enrichment at all). In accordance with the results obtained in vivo, EE was almost ineffective in the recovery of hippocampal neurogenic reserve in vitro in aged, but not in amyloid-treated or young adult, rats. Therefore, EE-based neuroprotective strategies effective in AΞ²-affected brain could not be directly extrapolated to aged brain
ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΡΠ°Π½ΡΡΡΠ·ΠΈΠΈ ΠΈ Π³ΠΈΠΏΠΎΠΊΡΠΈΠΈ Π½Π° ΠΊΠ»Π΅ΡΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ΠΉΡΠΎΠ²Π°ΡΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΡ in vitro
Up to 57% of patients develop postoperative delirium after surgery for congenital heart defects (CHD). To reduce cerebral damage in pediatric patients during CHD surgery it is important to find out what inflicts the worse damage: would it be a systemic inflammatory response (SIR) triggered by transfusion, or hypoxia developed in non-transfused patients? In vitro evaluation of hypoxia and SIR effects on the neurovascular unit (NVU) cells might contribute to finding the answer.The aim of the study was to compare the effect of varying severity hypoxia and SIR on the functional activity of NUV cells in vitro.Materials and methods. An in vitro NVU model was designed including neurons, astrocytes and endotheliocytes. The effect of hypoxia on NVU was evaluated in the control (C) and 4 study groups (H 1-4), formed based on O2 content in the medium. The C group NVU were cultivated in standard conditions: N2-75%, O2-20%, CO2-5%; H1: N2-99%, O2-1%; H2: N2- 98%, O2-2%; H3: N2-97%, O2-3 %; H4: N2-96%, O2-4%. The significance of the differences was 0.0125. The effect of interleukin-6 (IL-6) content on NVU was measured by adding to culture medium pediatric patientsβ serum with known minimal or maximal SIRS-response. The assessment was made in the Control - an intact NVU model, and 2 study groups β βMinimumβ and βMaximumβ, i.e. samples with minimum or maximum IL-6 content in culture, respectively. The significance of the differences was 0.017. The cells were incubated at a normothermia regimen for 30 minutes. Then, the functional activity of NVU cells was evaluated by measuring transendothelial resistance (TER) for 24 hours and Lucifer Yellow (LY) permeability test at 60 and 90 minutes after the start of the experiment.Results. After incubation under hypoxic conditions, TER changes occurred in all studied groups. However, they were statistically significant only in the group with 1% oxygen content in the medium. TER decrease in this group was observed after 2, 4 and 24 hours. LY permeability also changed at 60 and 90 minutes, similarly - in NVU cultivated with 1% oxygen in the medium. Minimal TER values were documented at 4 hours after patientsβ serum was added to NVU cells culture medium, and TER increased at 24 hours in both study groups. Cellular permeability to LY changed significantly after 1 hour exposure in both groups - with minimum and maximum IL-6 content in the medium. Although at 90 minutes, there was no difference between the 3 groups in LY permeability tests.Conclusion: Intensive SIR demonstrated short-term but more deleterious than hypoxia, effect on cells in the NVU model. Hypoxia disrupted functional activity of NUV cells only at 1% O 2 concentration in the medium.Π§Π°ΡΡΠΎΡΠ° ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π΄Π΅Π»ΠΈΡΠΈΡ ΠΏΡΠΈ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΈ Π²ΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
ΠΏΠΎΡΠΎΠΊΠΎΠ² ΡΠ΅ΡΠ΄ΡΠ° (ΠΠΠ‘) Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ 57%. Π ΠΏΠΎΠΈΡΠΊΠ΅ ΠΏΡΡΠ΅ΠΉ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠΈ ΡΠ΅ΡΠ΅Π±ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½ΠΈΡ ΠΏΡΠΈ ΠΊΠΎΡΡΠ΅ΠΊΡΠΈΠΈ ΠΠΠ‘ Ρ Π΄Π΅ΡΠ΅ΠΉ Π²Π°ΠΆΠ½ΡΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΠΎΠΏΡΠΎΡ - ΡΡΠΎ ΠΎΠΏΠ°ΡΠ½Π΅Π΅: Π³ΠΈΠΏΠΎΠΊΡΠΈΡ ΠΏΡΠΈ ΠΎΡΠΊΠ°Π·Π΅ ΠΎΡ ΡΡΠ°Π½ΡΡΡΠ·ΠΈΠΈ ΠΈΠ»ΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΠ³ΠΎ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° (Π‘ΠΠ) ΠΏΡΠΈ Π΅Π΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ Π³ΠΈΠΏΠΎΠΊΡΠΈΠΈ ΠΈ Π‘ΠΠ Π½Π° ΠΊΠ»Π΅ΡΠΊΠΈ Π½Π΅ΠΉΡΠΎΠ²Π°ΡΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΡ (ΠΠΠ) in vitro ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π²ΠΎΠΏΡΠΎΡΠ°.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΡΡΠ°Π²Π½ΠΈΡΡ Π²Π»ΠΈΡΠ½ΠΈΠ΅ Π³ΠΈΠΏΠΎΠΊΡΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΡΡΠΈ ΠΈ ΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΠ³ΠΎ Π²ΠΎΡΠΏΠ°Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΡΠ²Π΅ΡΠ° Π½Π° ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π½Π΅ΠΉΡΠΎΠ²Π°ΡΠΊΡΠ»ΡΡΠ½ΠΎΠΉ Π΅Π΄ΠΈΠ½ΠΈΡΡ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. Π‘ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π»ΠΈ in vitro ΠΌΠΎΠ΄Π΅Π»Ρ ΠΠΠ, ΡΠΎΡΡΠΎΡΡΡΡ ΠΈΠ· Π½Π΅ΠΉΡΠΎΠ½ΠΎΠ², Π°ΡΡΡΠΎΡΠΈΡΠΎΠ² ΠΈ ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠΎΡΠΈΡΠΎΠ². ΠΠ»ΠΈΡΠ½ΠΈΠ΅ Π³ΠΈΠΏΠΎΠΊΡΠΈΠΈ Π½Π° ΠΠΠ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ Π² ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΠΎΠΉ (Π) ΠΈ 4 ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
(Π1-4) Π³ΡΡΠΏΠΏΠ°Ρ
. ΠΡΡΠΏΠΏΡ ΡΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΏΠΎ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ Π2 Π² ΡΡΠ΅Π΄Π΅: Π β ΡΡΠ°Π½Π΄Π°ΡΡΠ½ΡΠ΅ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΡ: N2-75%, O2-20%, CO2-5%; Π1: N2-99 %, O2-1 %; Π2: N2-98 %, O2-2 %; Π3: N2-97 %, O2-3 %; Π4: N2-96 %, O2-4 %. ΠΠ½Π°ΡΠΈΠΌΠΎΡΡΡ ΡΠ°Π·Π»ΠΈΡΠΈΠΉ ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 0,0125. ΠΠ»ΠΈΡΠ½ΠΈΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΈΠ½ΡΠ΅ΡΠ»Π΅ΠΉΠΊΠΈΠ½Π°-6 (ΠΠ-6) Π½Π° ΠΠΠ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΠΏΡΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ Ρ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ ΡΡΠ²ΠΎΡΠΎΡΠΊΠΈ ΠΊΡΠΎΠ²ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π΄Π΅ΡΡΠΊΠΎΠ³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ° Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ, Π»ΠΈΠ±ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ Π½Π°ΠΏΡΡΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π‘ΠΠ. ΠΡΠ΅Π½ΠΊΡ ΠΏΡΠΎΠ²Π΅Π»ΠΈ Π² ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΠΎΠΉ ΠΈ 2 ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
Π³ΡΡΠΏΠΏΠ°Ρ
: Β«ΠΠΎΠ½ΡΡΠΎΠ»ΡΒ» β ΠΈΠ½ΡΠ°ΠΊΡΠ½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΠΠ; Π³ΡΡΠΏΠΏΡ Β«ΠΠΈΠ½ΠΈΠΌΡΠΌΒ» ΠΈ Β«ΠΠ°ΠΊΡΠΈΠΌΡΠΌΒ» - ΠΎΠ±ΡΠ°Π·ΡΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ Π»ΠΈΠ±ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΠΠ-6 Π² ΠΊΡΠ»ΡΡΡΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. ΠΠ½Π°ΡΠΈΠΌΠΎΡΡΡ ΡΠ°Π·Π»ΠΈΡΠΈΠΉ ΡΠΎΡΡΠ°Π²ΠΈΠ»Π° 0,017. ΠΠ½ΠΊΡΠ±Π°ΡΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΡΠ΅ΠΆΠΈΠΌΠ΅ Π½ΠΎΡΠΌΠΎΡΠ΅ΡΠΌΠΈΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 30 ΠΌΠΈΠ½ΡΡ. ΠΠ°ΡΠ΅ΠΌ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΠΠ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΠ°Π½ΡΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΎΠΏΡΠΎΡΠΈΠ²Π»Π΅Π½ΠΈΡ (Π’ΠΠ‘) Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 24 ΡΠ°ΡΠΎΠ² ΠΈ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΠΈ Π΄Π»Ρ ΠΊΡΠ°ΡΠΈΡΠ΅Π»Ρ Lucifer Yellow (LY) ΡΠ΅ΡΠ΅Π· 60 ΠΈ 90 ΠΌΠΈΠ½ΡΡ ΠΎΡ Π½Π°ΡΠ°Π»Π° ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠΎΡΠ»Π΅ ΠΈΠ½ΠΊΡΠ±Π°ΡΠΈΠΈ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π³ΠΈΠΏΠΎΠΊΡΠΈΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π’ΠΠ‘ Π½Π°ΡΡΡΠΏΠΈΠ»ΠΈ Π²ΠΎ Π²ΡΠ΅Ρ
ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
Π³ΡΡΠΏΠΏΠ°Ρ
ΠΊΠ»Π΅ΡΠΎΠΊ. ΠΠ΄Π½Π°ΠΊΠΎ, ΡΠΎΠ»ΡΠΊΠΎ Π² Π³ΡΡΠΏΠΏΠ΅ Ρ 1% ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° Π² ΡΡΠ΅Π΄Π΅ ΠΎΠ½ΠΈ Π±ΡΠ»ΠΈ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡ. Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΡ Π’ΠΠ‘ Π² Π΄Π°Π½Π½ΠΎΠΉ Π³ΡΡΠΏΠΏΠ΅ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈ ΡΠ΅ΡΠ΅Π· 2, 4 ΠΈ 24 ΡΠ°ΡΠ°. ΠΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π΄Π»Ρ ΠΊΡΠ°ΡΠΈΡΠ΅Π»Ρ LY ΠΈΠ·ΠΌΠ΅Π½ΠΈΠ»Π°ΡΡ ΡΠ΅ΡΠ΅Π· 60 ΠΈ 90 ΠΌΠΈΠ½ΡΡ ΡΠ°ΠΊΠΆΠ΅ ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΈΡ
ΠΈΠ½ΠΊΡΠ±Π°ΡΠΈΠΈ Π² ΡΡΠ΅Π΄Π΅ Ρ 1 % ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄ΠΎΠΌ. ΠΡΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΠΠ Ρ ΡΡΠ²ΠΎΡΠΎΡΠΊΠΎΠΉ ΠΊΡΠΎΠ²ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π²ΡΡΠ²ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π’ΠΠ‘ ΡΠ΅ΡΠ΅Π· 4 ΡΠ°ΡΠ° ΠΈ ΠΈΡ
Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠ΅Π· 24 ΡΠ°ΡΠ° Π΄Π»Ρ ΠΎΠ±Π΅ΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
Π³ΡΡΠΏΠΏ ΠΠΠ. ΠΡΠΎΠ½ΠΈΡΠ°Π΅ΠΌΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π΄Π»Ρ LY Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΈΠ·ΠΌΠ΅Π½ΠΈΠ»Π°ΡΡ ΠΊ 60-ΠΉ ΠΌΠΈΠ½ΡΡΠ΅ ΠΊΠ°ΠΊ Π² Π³ΡΡΠΏΠΏΠ΅ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ, ΡΠ°ΠΊ ΠΈ Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΠΠ-6 Π² ΡΡΠ΅Π΄Π΅. ΠΡΠΈ ΡΡΠΎΠΌ ΠΊ 90-ΠΉ ΠΌΠΈΠ½ΡΡΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΠΉ ΡΡΠΎΠ³ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π² ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
Π³ΡΡΠΏΠΏΠ°Ρ
ΠΈ Π² ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΠΎΠΉ Π³ΡΡΠΏΠΏΠ΅ ΡΠΆΠ΅ Π½Π΅ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈ.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠ°ΠΏΡΡΠΆΠ΅Π½Π½ΡΠΉ Π‘ΠΠ ΠΎΠΊΠ°Π·Π°Π» Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ΅, Π½ΠΎ ΠΊΡΠ°ΡΠΊΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π½Π° ΠΌΠΎΠ΄Π΅Π»Ρ ΠΠΠ, ΡΠ΅ΠΌ Π³ΠΈΠΏΠΎΠΊΡΠΈΡ. ΠΠΈΠΏΠΎΠΊΡΠΈΡ Π½Π°ΡΡΡΠΈΠ»Π° ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΠΠ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ ΠΊΠΈΡΠ»ΠΎΡΠΎΠ΄Π° Π² ΡΡΠ΅Π΄Π΅ - 1 %
Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers
https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd
Rising of intracellular NAD+ level and oppositely directed changes in CD38 expression in hippocampal cells in experimental Alzheimer's disease
The aim of the study was to assess the level of NAD+ in the brain of mice treated with beta-amyloid (AΞ²), as well as to determine the activity of ADP-ribosyl cyclase/CD38 and the number of CD38-immunopositive neurons, astrocytes and endothelial cells. Material and methods. The Alzheimer's disease model was reproduced by intrahippocampal administration of AΞ² to C57BL/6 mice. Determination of the NAD+ level in the extracellular fluid of the brain and in the hippocampal tissue was carried out by spectrophotometric analysis. Evaluation of the enzymatic activity of ADP-ribosyl cyclase/CD38 was carried out by the fluorimetric method, determination of the number of CD38-immunopositive cells by the immunohistochemistry method. Results and discussion. The level of NAD+ was significantly increased in the hippocampal tissue in mice after administration of AΞ², while the level of extracellular NAD+ did not change. The activity of ADP-ribosyl cyclase/CD38 in the hippocampal tissue did not change, but the number of CD38-immunopositive neurons decreased, and the number of CD38+ endothelial cells increased in the hippocampus of mice after administration of AΞ². Conclusion. Opposite changes in the expression of ADP-ribosyl cyclase / CD38 in neurons and endotheliocytes correspond to different metabolic states of these types of cells and, along with an increased intracellular pool of NAD+ in experimental Alzheimer's disease, reflect an adaptive stress response to AΞ² administration
Indirect Negative Effect of Mutant Ataxin-1 on Short- and Long-Term Synaptic Plasticity in Mouse Models of Spinocerebellar Ataxia Type 1
Spinocerebellar ataxia type 1 (SCA1) is an intractable progressive neurodegenerative disease that leads to a range of movement and motor defects and is eventually lethal. Purkinje cells (PC) are typically the first to show signs of degeneration. SCA1 is caused by an expansion of the polyglutamine tract in the ATXN1 gene and the subsequent buildup of mutant Ataxin-1 protein. In addition to its toxicity, mutant Ataxin-1 protein interferes with gene expression and signal transduction in cells. Recently, it is evident that ATXN1 is not only expressed in neurons but also in glia, however, it is unclear the extent to which either contributes to the overall pathology of SCA1. There are various ways to model SCA1 in mice. Here, functional deficits at cerebellar synapses were investigated in two mouse models of SCA1 in which mutant ATXN1 is either nonspecifically expressed in all cell types of the cerebellum (SCA1 knock-in (KI)), or specifically in Bergmann glia with lentiviral vectors expressing mutant ATXN1 under the control of the astrocyte-specific GFAP promoter. We report impairment of motor performance in both SCA1 models. In both cases, prominent signs of astrocytosis were found using immunohistochemistry. Electrophysiological experiments revealed alteration of presynaptic plasticity at synapses between parallel fibers and PCs, and climbing fibers and PCs in SCA1 KI mice, which is not observed in animals expressing mutant ATXN1 solely in Bergmann glia. In contrast, short- and long-term synaptic plasticity was affected in both SCA1 KI mice and glia-targeted SCA1 mice. Thus, non-neuronal mechanisms may underlie some aspects of SCA1 pathology in the cerebellum. By combining the outcomes of our current work with our previous data from the B05 SCA1 model, we further our understanding of the mechanisms of SCA1
Neuroinflammation and Infection: Molecular Mechanisms Associated with Dysfunction of Neurovascular Unit
Neuroinflammation is a complex inflammatory process in the central nervous system, which is sought to play an important defensive role against various pathogens, toxins or factors that induce neurodegeneration. The onset of neurodegenerative diseases and various microbial infections are counted as stimuli that can challenge the host immune system and trigger the development of neuroinflammation. The homeostatic nature of neuroinflammation is essential to maintain the neuroplasticity. Neuroinflammation is regulated by the activity of neuronal, glial, and endothelial cells within the neurovascular unit, which serves as a βplatformβ for the coordinated action of pro- and anti-inflammatory mechanisms. Production of inflammatory mediators (cytokines, chemokines, reactive oxygen species) by brain resident cells or cells migrating from the peripheral blood, results in the impairment of blood-brain barrier integrity, thereby further affecting the course of local inflammation. In this review, we analyzed the most recent data on the central nervous system inflammation and focused on major mechanisms of neurovascular unit dysfunction caused by neuroinflammation and infections
Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΊΠ°Π½Π΅ΠΉ ΠΌΠΎΠ·Π³Π° ΠΈ Π³Π΅ΠΌΠ°ΡΠΎΡΠ½ΡΠ΅ΡΠ°Π»ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π±Π°ΡΡΠ΅ΡΠ° in vitro
Neurovascular unit (NVU) is an ensemble of brain cells (cerebral endothelial cells, astrocytes, pericytes, neurons, and microglia), which regulates processes of transport through the blood-brain barrier (BBB) and controls local microcirculation and intercellular metabolic coupling. Dysfunction of NVU contributes to numerous types of central nervous system pathology. NVU pathophysiology has been extensively studied in various animal models of brain disorders, and there is growing evidence that modern approaches utilizing in vitro models are very promising for the assessment of intercellular communications within the NVU. Development of NVUβon-chip or BBBβon-chip as well as 3D NVU and brain tissue models suggests novel clues to understanding cell-to-cell interactions critical for brain functional activity, being therefore very important for translational studies, drug discovery, and development of novel analytical platforms. One of the mechanisms controlled by NVU activity is neurogenesis in highly specialized areas of brain (neurogenic niches, NNs), which are well-equipped for the maintenance of stem/progenitor cell pool and proliferation, differentiation, and migration of newly formed neuronal and glial cells. Specific properties of brain microvascular endothelial cells, particularly, high content of mitochondria, are important for establishment of vascular support in NVU and NNs. Metabolic activity of cells within NNs and NVU contributes to maintaining intercellular communications critical for the multicellular module integrity. We will discuss modern approaches to development of optimal microenvironment for in vitro BBB, NVU and NN models with the special
focus on neuroengineering and bioprinting potentialsΠΠ΅ΠΉΡΠΎΠ²Π°ΡΠΊΡΠ»ΡΡΠ½Π°Ρ Π΅Π΄ΠΈΠ½ΠΈΡΠ° (ΠΠΠ) β ΡΡΠΎ ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ·Π³Π°
(ΡΠ΅ΡΠ΅Π±ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΊΠ»Π΅ΡΠΊΠΈ, Π°ΡΡΡΠΎΡΠΈΡΡ, ΠΏΠ΅ΡΠΈΡΠΈΡΡ, Π½Π΅ΠΉΡΠΎΠ½Ρ, ΠΌΠΈΠΊΡΠΎΠ³Π»ΠΈΡ), ΠΊΠΎΡΠΎΡΡΠ΅
ΡΠ΅Π³ΡΠ»ΠΈΡΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΡ ΡΡΠ°Π½ΡΠΏΠΎΡΡΠ° ΡΠ΅ΡΠ΅Π· Π³Π΅ΠΌΠ°ΡΠΎΡΠ½ΡΠ΅ΡΠ°Π»ΠΈΡΠ΅ΡΠΊΠΈΠΉ Π±Π°ΡΡΠ΅Ρ (ΠΠΠ), ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΡΡ
ΠΌΠ΅ΡΡΠ½ΡΡ ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΡ, ΠΌΠ΅ΠΆΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ ΠΌΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΡΡ ΡΠ²ΡΠ·Ρ. ΠΠΈΡΡΡΠ½ΠΊΡΠΈΡ ΠΠΠ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ
Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΠΎΠ²Π΅Π½ΠΈΡ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΡΠΈΠΏΠΎΠ² ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠΈ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΡΠ²Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ. ΠΠ°ΡΠΎΡΠΈΠ·ΠΈΠΎΠ»ΠΎΠ³ΠΈΡ ΠΠΠ
ΡΠΈΡΠΎΠΊΠΎ ΠΈΠ·ΡΡΠ΅Π½Π° Π½Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΌΠΎΠ΄Π΅Π»ΡΡ
Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΌΠΎΠ·Π³Π° Π½Π° ΠΆΠΈΠ²ΠΎΡΠ½ΡΡ
. Π Π½Π°ΡΡΠΎΡΡΠ΅Π΅ Π²ΡΠ΅ΠΌΡ
ΠΏΠΎΡΠ²Π»ΡΠ΅ΡΡΡ Π²ΡΠ΅ Π±ΠΎΠ»ΡΡΠ΅ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ² ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Ρ Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ in
vitro Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½Ρ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΌΠ΅ΠΆΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΉ Π²Π½ΡΡΡΠΈ ΠΠΠ. Π Π°Π·ΡΠ°Π±ΠΎΡΠΊΠ°
ΡΠΎΡΡΠ΄ΠΈΡΡΠΎ-Π½Π΅ΡΠ²Π½ΡΡ
Π΅Π΄ΠΈΠ½ΠΈΡ Π½Π° ΡΠΈΠΏΠ΅ ΠΈΠ»ΠΈ ΠΠΠ Π½Π° ΡΠΈΠΏΠ΅, Π° ΡΠ°ΠΊΠΆΠ΅ 3D ΠΠΠ ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΊΠ°Π½ΠΈ ΠΌΠΎΠ·Π³Π°
ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°ΡΡ Π½ΠΎΠ²ΡΠ΅ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Ρ ΠΊ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΠΌΠ΅ΠΆΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠΉ, ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π΄Π»Ρ
ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ ΠΌΠΎΠ·Π³Π°, ΠΏΠΎΡΡΠΎΠΌΡ ΠΎΠ½ΠΈ ΠΎΡΠ΅Π½Ρ Π²Π°ΠΆΠ½Ρ Π΄Π»Ρ ΡΡΠ°Π½ΡΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ,
ΠΎΡΠΊΡΡΡΠΈΡ Π»Π΅ΠΊΠ°ΡΡΡΠ² ΠΈ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ Π½ΠΎΠ²ΡΡ
Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠ»Π°ΡΡΠΎΡΠΌ. ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΊΠΎΡΠΎΡΡΠΉ
ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅ΡΡΡ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡΡ ΠΠΠ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΉΡΠΎΠ³Π΅Π½Π΅Π· Π² ΡΠ·ΠΊΠΎΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΠΎΠ±Π»Π°ΡΡΡΡ
ΠΌΠΎΠ·Π³Π° (Π½Π΅ΠΉΡΠΎΠ³Π΅Π½Π½ΡΠ΅ Π½ΠΈΡΠΈ, ΠΠ), ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠ»ΡΠΆΠ°Ρ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠΌ Π΄Π»Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΡ ΠΏΡΠ»Π° ΡΡΠ²ΠΎΠ»ΠΎΠ²ΡΡ
/
ΠΏΡΠΎΠ³Π΅Π½ΠΈΡΠΎΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ, ΠΏΡΠΎΠ»ΠΈΡΠ΅ΡΠ°ΡΠΈΠΈ, Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ ΠΈ ΠΌΠΈΠ³ΡΠ°ΡΠΈΠΈ Π½ΠΎΠ²ΠΎΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΡ
Π½Π΅ΠΉΡΠΎΠ½ΠΎΠ²
ΠΈ Π³Π»ΠΈΠ°Π»ΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ. Π‘ΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°
ΡΠ½Π΄ΠΎΡΠ΅Π»ΠΈΠ°Π»ΡΠ½ΡΡ
ΠΊΠ»Π΅ΡΠΎΠΊ ΠΌΠΈΠΊΡΠΎΡΠΎΡΡΠ΄ΠΎΠ² Π³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ³ΠΎ
ΠΌΠΎΠ·Π³Π°, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ Π²ΡΡΠΎΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΌΠΈΡΠΎΡ
ΠΎΠ½Π΄ΡΠΈΠΉ, Π²Π°ΠΆΠ½Ρ Π΄Π»Ρ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠΎΡΡΠ΄ΠΈΡΡΠΎΠΉ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ
ΠΏΡΠΈ ΠΠΠ ΠΈ ΠΠ. ΠΠ΅ΡΠ°Π±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠ°Ρ Π°ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π²Π½ΡΡΡΠΈ ΠΠ ΠΈ ΠΠΠ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠ°Π½ΠΈΡ
ΠΌΠ΅ΠΆΠΊΠ»Π΅ΡΠΎΡΠ½ΡΡ
ΠΊΠΎΠΌΠΌΡΠ½ΠΈΠΊΠ°ΡΠΈΠΉ, ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈ Π²Π°ΠΆΠ½ΡΡ
Π΄Π»Ρ ΡΠ΅Π»ΠΎΡΡΠ½ΠΎΡΡΠΈ ΠΌΠ½ΠΎΠ³ΠΎΠΊΠ»Π΅ΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄ΡΠ»Ρ.
Π ΡΠ°Π±ΠΎΡΠ΅ ΠΎΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Ρ ΠΊ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΌΠΈΠΊΡΠΎΡΡΠ΅Π΄Ρ Π΄Π»Ρ in vitro
ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ ΠΠΠ, ΠΠΠ ΠΈ ΠΠ. ΠΡΠΎΠ±ΠΎΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ ΡΠ΄Π΅Π»Π΅Π½ΠΎ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π°ΠΌ Π½Π΅ΠΉΡΠΎΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠΈΠΈ ΠΈ Π±ΠΈΠΎΠΏΠ΅ΡΠ°Ρ