2 research outputs found

    In-situ Observation of Martensite Decomposition in HAZ of Cr-Mo Steel Weldment

    Get PDF
    In-situ observation of martensite decomposition at Heat Affected Zone (HAZ) was investigated on a dissimilar joining between 2.25Cr-0.5Mo grade T22 as base material and ER90S-B9 as filler metal using GTAW process using LEEM at a synchrotron facility. A post weld heat treatment (PWHT) cycle was simulated on a welded specimen in high vacuum chamber by heating cartridge and electron bombardment. Both effects PWHT duration and weld areas were studied for comparisons. At the simulated PWHT between 690oC -700oC in CGHAZ, martensite started to decompose by the dissolution of carbide flakes. The prior-austenite grain boundaries were also shown during the process. The same phenomena were also observed in FGHAZ with different extent. In un-affected base material, ferrite and new pearlite grains presented and grew at the expense of old pearlite. Longer PWHT duration resulted in more ferrite formed in all weld areas. Raising PWHT temperature to 730oC could push the reaction above Eutectoid temperature as the new austenite formed at grain boundaries. The proposed mechanism for martensite decomposition would be in steps as dissolution of carbide followed by formation of ferrite and growth as PWHT proceeded
    corecore