20 research outputs found

    Magnetized Iron Atmospheres for Neutron Stars

    Full text link
    Using a Hartree-Fock formalism, we estimate energy levels and photon cross sections for atomic iron in magnetic fields B ~ 10^13 G. Computing ionization equilibrium and normal mode opacities with these data, we construct LTE neutron star model atmospheres at 5.5 < Log(T_eff) < 6.5 and compute emergent spectra. We examine the dependence of the emergent spectra on T_eff and B. We also show the spectral variation with the angle between the magnetic field and the atmosphere normal and describe the significant limb darkening in the X-ray band. These results are compared with recent detailed computations of neutron star H model atmospheres in high fields and with low field Fe and H model atmospheres constructed from detailed opacities. The large spectral differences for different surface compositions may be discernible with present X-ray data; we also note improvements needed to allow comparison of Fe models with high quality spectra.Comment: 18 pages with 5 eps figures, accepted for publication in ApJ Replaced due to clerical error only: one more author, no new conten

    Equation of state of a strongly magnetized hydrogen plasma

    Get PDF
    The influence of a constant uniform magnetic field on the thermodynamic properties of a partially ionized hydrogen plasma is studied. Using the method of Green' s function various interaction contributions to the thermodynamic functions are calculated. The equation of state of a quantum magnetized plasma is presented within the framework of a low density expansion up to the order e^4 n^2 and, additionally, including ladder type contributions via the bound states in the case of strong magnetic fields (2.35*10^{5} T << B << 2.35*10^{9} T). We show that for high densities (n=10^{27-30} m^{-3}) and temperatures T=10^5 - 10^6 K typical for the surface of neutron stars nonideality effects as, e.g., Debye screening must be taken into account.Comment: 12 pages, 2 Postscript figures. uses revtex, to appear in Phys. Rev.

    Hydrogen Molecules In Superstrong Magnetic Field: II. Excitation Levels

    Get PDF
    We study the energy levels of H2_2 molecules in a superstrong magnetic field (B\go 10^{12} G), typically found on the surfaces of neutron stars. The interatomic interaction potentials are calculated by a Hartree-Fock method with multi-configurations assuming electrons are in the ground Landau state. Both the aligned configurations and arbitrary orientations of the molecular axis with respect to the magnetic field axis are considered. Different types of molecular excitations are then studied: electronic excitations, aligned (along the magnetic axis) vibrational excitations, transverse vibrational excitations (a constrained rotation of the molecular axis around the magnetic field line). Similar results for the molecular ion H2+_2^+ are also obtained and compared with previous variational calculations. Both numerical results and analytical fitting formulae are given for a wide range of field strengths. In contrast to the zero-field case, it is found that the transverse vibrational excitation energies can be larger than the aligned vibration excitation, and they both can be comparable or larger than the electronic excitations. For B\go B_{crit}=4.23\times 10^{13} G, the Landau energy of proton is appreciable and there is some controversy regarding the dissociation energy of H2_2. We show that H2_2 is bound even for B>>BcritB>>B_{crit} and that neither proton has a Landau excitation in the ground molecular state.Comment: Revtex (45 pages), 3 postscript figures; Phys. Rev. A in pres

    Quantum computation with trapped polar molecules

    Full text link
    We propose a novel physical realization of a quantum computer. The qubits are electric dipole moments of ultracold diatomic molecules, oriented along or against an external electric field. Individual molecules are held in a 1-D trap array, with an electric field gradient allowing spectroscopic addressing of each site. Bits are coupled via the electric dipole-dipole interaction. Using technologies similar to those already demonstrated, this design can plausibly lead to a quantum computer with ≳104\gtrsim 10^4 qubits, which can perform ∌105\sim 10^5 CNOT gates in the anticipated decoherence time of ∌5\sim 5 s.Comment: 4 pages, RevTeX 4, 2 figures. Edited for length and converted to RevTeX, but no substantial changes from earlier pdf versio

    Matter in Strong Magnetic Fields

    Full text link
    The properties of matter are significantly modified by strong magnetic fields, B>>2.35×109B>>2.35\times 10^9 Gauss (1G=10−4Tesla1 G =10^{-4} Tesla), as are typically found on the surfaces of neutron stars. In such strong magnetic fields, the Coulomb force on an electron acts as a small perturbation compared to the magnetic force. The strong field condition can also be mimicked in laboratory semiconductors. Because of the strong magnetic confinement of electrons perpendicular to the field, atoms attain a much greater binding energy compared to the zero-field case, and various other bound states become possible, including molecular chains and three-dimensional condensed matter. This article reviews the electronic structure of atoms, molecules and bulk matter, as well as the thermodynamic properties of dense plasma, in strong magnetic fields, 109G<<B<1016G10^9G << B < 10^{16}G. The focus is on the basic physical pictures and approximate scaling relations, although various theoretical approaches and numerical results are also discussed. For the neutron star surface composed of light elements such as hydrogen or helium, the outermost layer constitutes a nondegenerate, partially ionized Coulomb plasma if B<<1014GB<<10^{14}G, and may be in the form of a condensed liquid if the magnetic field is stronger (and temperature <106<10^6 K). For the iron surface, the outermost layer of the neutron star can be in a gaseous or a condensed phase depending on the cohesive property of the iron condensate.Comment: 45 pages with 9 figures. Many small additions/changes. Accepted for publication in Rev. Mod. Phy

    Quantum Theory of Angular Momentum

    No full text
    This is the most complete handbook on the quantum theory of angular momentum. Containing basic definitions and theorems as well as relations, tables of formula and numerical tables which are essential for applications to many physical problems, the book is useful for specialists in nuclear and particle physics, atomic and molecular spectroscopy, plasma physics, collision and reaction theory, quantum chemistry, etc. The authors take pains to write many formulae in different coordinate systems thus providing users with added ease in consulting this book. Each chapter opens with a comprehensive list of its contents to ease the search for any information needed later. New results relating to different aspects of the angular momentum thoery are also included. Containing close to 500 pages this book also gathers together many useful formulae besides those related to angular momentum. The book also compares different notations used by previous authors.illustrato

    Quantum Theory Of Angular Momentum

    Get PDF
    This is the most complete handbook on the quantum theory of angular momentum. Containing basic definitions and theorems as well as relations, tables of formula and numerical tables which are essential for applications to many physical problems, the book is useful for specialists in nuclear and particle physics, atomic and molecular spectroscopy, plasma physics, collision and reaction theory, quantum chemistry, etc. The authors take pains to write many formulae in different coordinate systems thus providing users with added ease in consulting this book. Each chapter opens with a comprehensive list of its contents to ease the search for any information needed later. New results relating to different aspects of the angular momentum thoery are also included. Containing close to 500 pages this book also gathers together many useful formulae besides those related to angular momentum. The book also compares different notations used by previous authors
    corecore