16 research outputs found

    Production of a New Cyclic Depsipeptide by the Culture Broth of Staphylococcus sp. Isolated from Corallina officinalis L.

    Get PDF
    A new cyclic depsipeptide (1) has been isolated from culture broth of Staphylococcus sp. (No. P-100826-4-6) derived from Corallina officinalis L., together with the known compounds indol-3-carboxylic acid (2), 1,5-dideoxy-3-C-methyl arabinitol (3), thymine (4), uracil (5), cyclo (L-pro-L-omet) (6) and macrolactin B (7). The structure of (1) was established to be cyclo (2α, 3-diaminopropoinc acid-L-Asn-3-β-hydroxy-5-methyl-tetradecanoic acid-L-Leu1-L-Asp-L-Val-L-Leu2-L-Leu3) by extensive spectroscopic techniques including1 H NMR,13 C NMR,1 H-1 H COSY, HMBC, HSQC, NOESY, and HRFABMS. The antimicrobial activities of compounds 1?7 were evaluated. Compounds 1?5, and 7 showed moderate antimicrobial activity while compound 6 exhibited a potent antimicrobial and antifungal activities

    Production of a New Cyclic Depsipeptide by the Culture Broth of Staphylococcus sp. Isolated from Corallina officinalis L.

    Get PDF
    A new cyclic depsipeptide (1) has been isolated from culture broth of Staphylococcus sp. (No. P-100826-4-6) derived from Corallina officinalis L., together with the known compounds indol-3-carboxylic acid (2), 1,5-dideoxy-3-C-methyl arabinitol (3), thymine (4), uracil (5), cyclo (L-pro-L-omet) (6) and macrolactin B (7). The structure of (1) was established to be cyclo (2α, 3-diaminopropoinc acid-L-Asn-3-β-hydroxy-5-methyl-tetradecanoic acid-L-Leu1-L-Asp-L-Val-L-Leu2-L-Leu3) by extensive spectroscopic techniques including1 H NMR,13 C NMR,1 H-1 H COSY, HMBC, HSQC, NOESY, and HRFABMS. The antimicrobial activities of compounds 1–7 were evaluated. Compounds 1–5, and 7 showed moderate antimicrobial activity while compound 6 exhibited a potent antimicrobial and antifungal activities

    Phenylboronic Acid-Grafted Chitosan Nanocapsules for Effective Delivery and Controllable Release of Natural Antioxidants: Olive Oil and Hydroxytyrosol

    No full text
    Olives and virgin olive oil (VOO) are a staple of Mediterranean diets and are rich in several beneficial phenolic compounds, including hydroxytyrosol (HT). Therefore, VOO was extracted from Koroneiki olive fruits, and its volatile as well as phenolic components were identified. Meanwhile, in order to upgrade the pharmaceutical capabilities of VOO and HT, a new conjugate phenylboronic acid-chitosan nanoparticles (PBA-CSNPs, NF-1) was fabricated and applied as nanocapsules for implanting high loading and efficient delivery of VOO and HT nanoformulations (NF-2 and NF-3). Due to the H-bonding interactions and boronate ester formation between the hydroxyl groups of the phenolic content of VOO or HT and the PBA groups in the nanocapsules (NF-1), VOO and HT were successfully loaded into the PBA-CSNPs nanocapsules with high loading contents and encapsulation efficacies. The NF-2 and NF-3 nanoformulations demonstrated physicochemical stability, as revealed by their respective zeta potential values, and pH-triggered drug release characteristics. The in vitro studies demonstrated that the nascent nanocapsules were almost completely nontoxic to both healthy and cancer cells, whereas VOO-loaded (NF-2) and HT-loaded nanocapsules (NF-3) showed efficient anti-breast cancer efficiencies. In addition, the antimicrobial and antioxidant potentials of VOO and HT were significantly improved after nanoencapsulation

    Silver Nanoparticles Formulation of Flower Head’s Polyphenols of Cynara scolymus L.: A Promising Candidate against Prostate (PC-3) Cancer Cell Line through Apoptosis Activation

    No full text
    Cynara scolymus L. (Family: Compositae) or artichoke is a nutritious edible plant widely used for its hepatoprotective effect. Crude extracts of flower, bract, and stem were prepared and evaluated for their in vitro antioxidant activity and phenolic content. The flower crude extract exhibited the highest phenolic content (74.29 mg GAE/gm) as well as the best in vitro antioxidant activity using total antioxidant capacity (TAC), ferric reducing antioxidant power (FEAP), and 1,1-diphenyl-2-picrylhyazyl (DPPH) scavenging assays compared with ascorbic acid. Phenolic fractions of the crude extracts of different parts were separated and identified using high-performance liquid chromatography HPLC-DAD analysis. The silver nanoparticles of these phenolic fractions were established and tested for their cytotoxicity and apoptotic activity. Results showed that silver nanoparticles of a polyphenolic fraction of flower extract (Nano-TP/Flowers) exhibited potent cytotoxicity against prostate (PC-3) and lung (A549) cancer cell lines with IC50 values of 0.85 μg/mL and 0.94 μg/mL, respectively, compared with doxorubicin as a standard. For apoptosis-induction, Nano-TP/Flowers exhibited apoptosis in PC-3 with a higher ratio than in A549 cells. It induced total prostate apoptotic cell death by 227-fold change while it induced apoptosis in A549 cells by 15.6-fold change. Nano-TP/Flowers upregulated both pro-apoptotic markers and downregulated the antiapoptotic genes using RT-PCR. Hence, this extract may serve as a promising source for anti-prostate cancer candidates

    Comparative Estimation of the Cytotoxic Activity of Different Parts of Cynara scolymus L.: Crude Extracts versus Green Synthesized Silver Nanoparticles with Apoptotic Investigation

    No full text
    Different parts of Cynara scolymus L. and their green synthesized eco-friendly silver nanoparticles (AgNPs) were screened for their cytotoxicity and apoptotic activity. Results showed that flower extract AgNPs exhibited more potent cytotoxicity compared to the normal form against PC-3 and A549 cell lines with IC50 values of 2.47 μg/mL and 1.35 μg/mL, respectively. The results were compared to doxorubicin (IC50 = 5.13 and 6.19 μg/mL, respectively). For apoptosis-induction, AgNPs prepared from the flower extract induced cell death by apoptosis by 41.34-fold change and induced necrotic cell death by 10.2-fold. Additionally, they induced total prostate apoptotic cell death by a 16.18-fold change, and it slightly induced necrotic cell death by 2.7-fold. Hence, green synthesized flower extract AgNPs exhibited cytotoxicity in A549 and PC-3 through apoptosis-induction in both cells. Consequently, synthesized AgNPs were further tested for apoptosis and increased gene and protein expression of pro-apoptotic markers while decreasing expression of anti-apoptotic genes. As a result, this formula may serve as a promising source for anti-cancer candidates. Finally, liquid chromatography combined with electrospray mass spectrometry (LC-ESI-MS) analysis was assessed to identify the common bioactive metabolites in crude extracts of stem, flower, and bract

    Molecular Docking and Dynamics Simulation Study of Hyrtios erectus Isolated Scalarane Sesterterpenes as Potential SARS-CoV-2 Dual Target Inhibitors

    No full text
    Presently, the world is under the toll of pandemic coronavirus disease-2019 (COVID-19) outbreak caused by SARS-CoV-2. Lack of effective and safe therapeutics has stressed the scientific community for developing novel therapeutics capable of alleviating and stopping this pandemic. Within the presented study, molecular docking, ADME properties and all-atom molecular dynamic (MD) simulation, along with two standard antiviral agents (lopinavir and benzopurpurin-4B), were applied to investigate 15 scalaranes sesterterpenes natural compounds, purified from the Red Sea marine sponge Hyrtios erectus, as potential COVID-19 dual-target inhibitors. Following multi-step docking within COVID-19 main protease and Nsp15 endoribonuclease cavities, nine promising drug-like compounds exhibited higher docking scores as well as better interactions with the target’s crucial residues than those of reference ligands. Compounds 2, 6, 11, and 15, were predicted to simultaneously subdue the activity of the two COVID-19 targets. Dynamics behavior of the best-docked molecules, compounds 15 and 6, within COVID-19 target pockets showed substantial stability of ligand-protein complexes as presented via several MD simulation parameters. Furthermore, calculated free-binding energies from MD simulation illustrated significant ligand’s binding affinity towards respective target pockets. All provided findings supported the utility of scalarane-based sesterterpenes, particularly compounds 15 and 6, as promising lead candidates guiding the development of effective therapeutics against SARS-CoV-2

    Design, Synthesis and Cytotoxic Activity Evaluation of Newly Synthesized Amides-Based TMP Moiety as Potential Anticancer Agents over HepG2 Cells

    No full text
    A novel series of amides based TMP moiety was designed, synthesized and evaluated for their antiproliferative as well as enzyme inhibition activity. Compounds 6a and 6b showed remarkable cytotoxic activity against HepG2 cells with IC50 values 0.65 and 0.92 μM, respectively compared with SAHA and CA-4 as reference compounds. In addition, compound 6a demonstrated good HDAC-tubulin dual inhibition activity as it showed better HDAC activity as well as anti-tubulin activity. Moreover, compound 6a exhibited G2/M phase arrest and pre-G1 apoptosis as demonstrated by cell cycle analysis and Annexin V assays. Further apoptosis studies demonstrated that compound 6a boosted the level of caspase 3/7. Caspase 3/7 activation and apoptosis induction were evidenced by decrease in mitochondrial permeability suggesting that activation of caspase 3/7 may occur via mitochondrial apoptotic pathway

    Thioctamer: a novel thioctic acid–glatiramer acetate nanoconjugate expedites wound healing in diabetic rats

    No full text
    AbstractThe current work aims to design thioctic acid (TA) and glatiramer acetate (GA) nanoconjugate (thioctamer) loaded hydrogel formula as well as evaluation of thioctamer preclinical efficacy in expediting wound healing in a rat model of the diabetic wound. Thioctamer was prepared by conjugation of GA and TA in a 1:1 molar ratio. Particle size, zeta potential, and thermodynamic stability of the prepared thioctamer were assessed. Thioctamer was loaded in hydroxypropyl methylcellulose-based hydrogel and in vitro release study was investigated. The ability of thioctamer to enhance the process of wound healing in diabetic rats was investigated by assessing wound contraction and immunohistochemical assessment of the inflammation markers IL-6 and TNF-α. The results demonstrated that thioctamer showed particle size of 137 ± 21.4 nm, polydispersity index (PDI) of 0.235, and positive zeta potential value of 7.43 ± 4.95 mV. On day 10 of making a skin excision, diabetic rat wounds administered thioctamer preparation showed almost complete healing (95.6 ± 8.6%). Meanwhile, % of wound contraction in animals treated with TA or GA groups exhibited values amounting to 56.5 ± 5.8% and 62.6 ± 7.1%, respectively. Histological investigation showed that the highest healing rate was noted in the thioctamer group animals, as the surface of the wound was nearly fully protected by regenerated epithelium with keratinization, with few inflammatory cells noticed. Thioctamer significantly (p<.05) inhibited IL-6 and TNF-α expression as compared with sections obtained from the negative control, TA, GA, or positive control group animals on day 14. The evidence of the ability of thioctamer to significantly expedite wound healing in the diabetic rats is presented

    Paralemnalia thyrsoides-associated fungi: phylogenetic diversity, cytotoxic potential, metabolomic profiling and docking analysis

    No full text
    Abstract Background Cancer continues to be one of the biggest causes of death that affects human health. Chemical resistance is still a problem in conventional cancer treatments. Fortunately, numerous natural compounds originating from different microbes, including fungi, possess cytotoxic characteristics that are now well known. This study aims to investigate the anticancer prospects of five fungal strains that were cultivated and isolated from the Red Sea soft coral Paralemnalia thyrsoides. The in vitro cytotoxic potential of the ethyl acetate extracts of the different five isolates were evaluated using MTS assay against four cancer cell lines; A549, CT-26, MDA-MB-231, and U87. Metabolomics profiling of the different extracts using LC-HR-ESI-MS, besides molecular docking studies for the dereplicated compounds were performed to unveil the chemical profile and the cytotoxic mechanism of the soft coral associated fungi. Results The five isolated fungal strains were identified as Penicillium griseofulvum (RD1), Cladosporium sphaerospermum (RD2), Cladosporium liminiforme (RD3), Penicillium chrysogenum (RD4), and Epicoccum nigrum (RD5). The in vitro study showed that the ethyl acetate extract of RD4 exhibited the strongest cytotoxic potency against three cancer cell lines A549, CT-26 and MDA-MB-231 with IC50 values of 1.45 ± 8.54, 1.58 ± 6.55 and 1.39 ± 2.0 µg/mL, respectively, also, RD3 revealed selective cytotoxic potency against A549 with IC50 value of 6.99 ± 3.47 µg/mL. Docking study of 32 compounds dereplicated from the metabolomics profiling demonstrated a promising binding conformation with EGFR tyrosine kinase that resembled its co-crystallized ligand albeit with better binding energy score. Conclusion Our results highlight the importance of soft coral-associated fungi as a promising source for anticancer metabolites for future drug discovery
    corecore