16 research outputs found

    Visual Analytics Evaluation Based on Judgment Analysis Theory

    Get PDF
    In this paper we propose a framework to quantitatively evaluate user awareness and the level of support that visual analytics decision support systems (VADS) provide. For the framework, which has a theoretical underpinning from the field of judgement analysis, we propose a model for VADS system. The framework bridges the gap between judgment analysis and VADS evaluation by conceptually connecting judgment analysis concepts to visual analytic. The proposed approach offers an insights based evaluation to measure the importance and the utility of the insights. We propose to model insights and user findings as random variables that parametrize user decisions. The mixed methodology used in our framework has the potential to study user decision process in real situations while producing results that can be generalized. Our contributions in this work appear in the modeling of VADS system and the evaluation framework we propose which quantifies situation awareness. Other advantages include evaluating collaboration and analyzing joint decisions. Some limitations of the framework are also discussed including the requirement of large testing data

    The Validity, Generalizability and Feasibility of Summative Evaluation Methods in Visual Analytics

    Full text link
    Many evaluation methods have been used to assess the usefulness of Visual Analytics (VA) solutions. These methods stem from a variety of origins with different assumptions and goals, which cause confusion about their proofing capabilities. Moreover, the lack of discussion about the evaluation processes may limit our potential to develop new evaluation methods specialized for VA. In this paper, we present an analysis of evaluation methods that have been used to summatively evaluate VA solutions. We provide a survey and taxonomy of the evaluation methods that have appeared in the VAST literature in the past two years. We then analyze these methods in terms of validity and generalizability of their findings, as well as the feasibility of using them. We propose a new metric called summative quality to compare evaluation methods according to their ability to prove usefulness, and make recommendations for selecting evaluation methods based on their summative quality in the VA domain.Comment: IEEE VIS (VAST) 201

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Evaluation of Visual Analytics with Application to Social Spambot Labeling

    No full text
    Visual analytics (VA) solutions emerged in the past decade and tackled many problems in a variety of domains. The power of combining the abilities of human and machine creates fertile ground for new solutions to grow. However, the rise of these hybrid solutions complicates the process of evaluation. Unlike automated solutions, VA solutions behavior depends on the user who operates them. This creates a dimension of variability in measured performance. The existence of a human, on the other hand, allows researchers to borrow evaluation methods from domains, such as sociology. The challenge in these methods, however, lies in gathering and analyzing qualitative data to build valid evidence of usefulness. This thesis tackles the challenge of evaluating the usefulness of VA solutions. We survey existing evaluation methods that have been used to assess VA solutions. We then analyze these methods in terms of validity and generalizability of their findings, as well as the feasibility of using them. Subsequently, we propose an evaluation framework which suggests evaluating VA solutions based on judgment analysis theory. The analysis provided by our framework is capable of quantitatively assessing the performance of a solution while providing a reason for the captured performance. We have conducted multiple case studies in social spambot labeling domain to apply our theoretical discussion. We have developed a VA solution that tackles social spambot labeling problem, then use this solution to apply existing evaluation methods and showcase some of their limitations. Furthermore, we have used our solution to show the benefit yielded by our proposed evaluation framework

    VASSL: A Visual Analytics Toolkit for Social Spambot Labeling

    No full text

    Global Burden of Cardiovascular Diseases and Risks, 1990-2022

    No full text
    corecore